First time here? Checkout the FAQ!
+3 votes

For an undirected graph $G=(V, E)$, the line graph $G'=(V', E')$ is obtained by replacing each edge in $E$ by a vertex, and adding an edge between two vertices in $V'$ if the corresponding edges in $G$ are incident on the same vertex. Which of the following is TRUE of line graphs?

  1. the line graph for a complete graph is complete
  2. the line graph for a connected graph is connected
  3. the line graph for a bipartite graph is bipartite 
  4. the maximum degree of any vertex in the line graph is at most the maximum degree in the original graph
  5. each vertex in the line graph has degree one or two
asked in Graph Theory by Veteran (73.2k points)   | 95 views
Option B). is true.
yes, Agreed. (y)
why not option C?

1 Answer

+2 votes

The line graph of a connected graph is connected. If G is connected, it contains a path connecting any two of its edges, which translates into a path in L(G) containing any two of the vertices of L(G). Therefore, option B is correct.

We can also do this question using elimination of options. 

You can view the following google drive link for the example -

answered by Junior (991 points)  
edited by
but your L(G2): e1---e2 it is bipertite right?e1 may be in one partition and e2 on is bipertite i guess.

I have corrected the example, and updated the file.
great example you have updated...proving line of tree is not a tree too :p
Top Users Jan 2017
  1. Debashish Deka

    7090 Points

  2. Habibkhan

    4676 Points

  3. Vijay Thakur

    4224 Points

  4. saurabh rai

    4014 Points

  5. sudsho

    3982 Points

  6. Arjun

    3138 Points

  7. GateSet

    3088 Points

  8. santhoshdevulapally

    3004 Points

  9. Bikram

    2976 Points

  10. Sushant Gokhale

    2824 Points

Monthly Topper: Rs. 500 gift card

18,816 questions
23,786 answers
20,133 users