First time here? Checkout the FAQ!
+3 votes

For an undirected graph $G=(V, E)$, the line graph $G'=(V', E')$ is obtained by replacing each edge in $E$ by a vertex, and adding an edge between two vertices in $V'$ if the corresponding edges in $G$ are incident on the same vertex. Which of the following is TRUE of line graphs?

  1. the line graph for a complete graph is complete
  2. the line graph for a connected graph is connected
  3. the line graph for a bipartite graph is bipartite 
  4. the maximum degree of any vertex in the line graph is at most the maximum degree in the original graph
  5. each vertex in the line graph has degree one or two
asked in Graph Theory by Veteran (76.3k points)   | 133 views
Option B). is true.
yes, Agreed. (y)
why not option C?
you can check with K(2,2). The line graph obtained is not biparitite.

1 Answer

+2 votes

The line graph of a connected graph is connected. If G is connected, it contains a path connecting any two of its edges, which translates into a path in L(G) containing any two of the vertices of L(G). Therefore, option B is correct.

We can also do this question using elimination of options. 

You can view the following google drive link for the example -

answered by Active (1k points)  
edited by
but your L(G2): e1---e2 it is bipertite right?e1 may be in one partition and e2 on is bipertite i guess.

I have corrected the example, and updated the file.
great example you have updated...proving line of tree is not a tree too :p

Top Users Apr 2017
  1. akash.dinkar12

    3660 Points

  2. Divya Bharti

    2576 Points

  3. Deepthi_ts

    2040 Points

  4. rude

    1966 Points

  5. Tesla!

    1768 Points

  6. Debashish Deka

    1614 Points

  7. Shubham Sharma 2

    1610 Points

  8. Arunav Khare

    1464 Points

  9. Arjun

    1440 Points

  10. Kapil

    1426 Points

Monthly Topper: Rs. 500 gift card

22,084 questions
28,059 answers
24,158 users