GATE CSE
First time here? Checkout the FAQ!
x
0 votes
83 views
$\lim_{x\rightarrow \pi } (1+\cos x)/\tan ^{2}x$
asked in Calculus by Junior (805 points)   | 83 views

L $= \frac{1+cos\ x}{tan^2\ x}\\= \frac{1+cos\ x}{sec^2\ x-1}\\ = \frac{1+cos\ x}{ \frac{1-cos^2\ x}{cos^2\ x}}\\ = \frac{(cos^2\ x)(1+cos\ x)}{(1-cos\ x)(1+cos\ x)}\\= \frac{cos^2\ x}{1-cos\ x}$

$\lim_{x \to \pi} L =\lim_{x \to \pi} \frac{cos^2\ x}{1-cos\ x} = \frac{cos^2\ \pi}{1-cos\ \pi}=\frac{(-1)^2}{1-(-1)} = \frac{1}{2}$

1 Answer

+3 votes
Best answer
$

\lim_{x\rightarrow \pi } (1+\cos x)/\tan ^{2}x $

applying l hospital

$ \lim_{x\rightarrow \pi } (-\sin x)/2*\tan x*sec^{2}x $

it will be

$\lim_{x\rightarrow \pi } (-1)/2*\sec x$

substituting ans will be 1/2
answered by Boss (7.8k points)  
selected by

Related questions

0 votes
1 answer
1
asked in Mathematical Logic by Prateek kumar Loyal (4k points)   | 46 views
+2 votes
1 answer
2
asked in Mathematical Logic by Prateek kumar Loyal (4k points)   | 80 views
0 votes
0 answers
3
asked in Mathematical Logic by Prateek kumar Loyal (4k points)   | 57 views
Top Users Jan 2017
  1. Debashish Deka

    9716 Points

  2. sudsho

    5558 Points

  3. Bikram

    5290 Points

  4. Habibkhan

    4990 Points

  5. Vijay Thakur

    4498 Points

  6. Arjun

    4418 Points

  7. saurabh rai

    4236 Points

  8. Sushant Gokhale

    4226 Points

  9. Kapil

    3848 Points

  10. santhoshdevulapally

    3808 Points

Monthly Topper: Rs. 500 gift card

19,449 questions
24,228 answers
53,953 comments
20,373 users