GATE CSE
First time here? Checkout the FAQ!
x
0 votes
103 views
$\lim_{x\rightarrow \pi } (1+\cos x)/\tan ^{2}x$
asked in Calculus by Active (1.4k points)  
retagged by | 103 views

L $= \frac{1+cos\ x}{tan^2\ x}\\= \frac{1+cos\ x}{sec^2\ x-1}\\ = \frac{1+cos\ x}{ \frac{1-cos^2\ x}{cos^2\ x}}\\ = \frac{(cos^2\ x)(1+cos\ x)}{(1-cos\ x)(1+cos\ x)}\\= \frac{cos^2\ x}{1-cos\ x}$

$\lim_{x \to \pi} L =\lim_{x \to \pi} \frac{cos^2\ x}{1-cos\ x} = \frac{cos^2\ \pi}{1-cos\ \pi}=\frac{(-1)^2}{1-(-1)} = \frac{1}{2}$

1 Answer

+3 votes
Best answer
$

\lim_{x\rightarrow \pi } (1+\cos x)/\tan ^{2}x $

applying l hospital

$ \lim_{x\rightarrow \pi } (-\sin x)/2*\tan x*sec^{2}x $

it will be

$\lim_{x\rightarrow \pi } (-1)/2*\sec x$

substituting ans will be 1/2
answered by Boss (9.9k points)  
selected by


Top Users Aug 2017
  1. ABKUNDAN

    4660 Points

  2. Bikram

    4366 Points

  3. akash.dinkar12

    3258 Points

  4. rahul sharma 5

    3042 Points

  5. manu00x

    2682 Points

  6. makhdoom ghaya

    2410 Points

  7. just_bhavana

    2100 Points

  8. Tesla!

    1918 Points

  9. stblue

    1682 Points

  10. joshi_nitish

    1608 Points


24,928 questions
32,024 answers
74,385 comments
30,113 users