GATE CSE
First time here? Checkout the FAQ!
x
0 votes
96 views
$\lim_{x\rightarrow \pi } (1+\cos x)/\tan ^{2}x$
asked in Calculus by Active (1.2k points)   | 96 views

L $= \frac{1+cos\ x}{tan^2\ x}\\= \frac{1+cos\ x}{sec^2\ x-1}\\ = \frac{1+cos\ x}{ \frac{1-cos^2\ x}{cos^2\ x}}\\ = \frac{(cos^2\ x)(1+cos\ x)}{(1-cos\ x)(1+cos\ x)}\\= \frac{cos^2\ x}{1-cos\ x}$

$\lim_{x \to \pi} L =\lim_{x \to \pi} \frac{cos^2\ x}{1-cos\ x} = \frac{cos^2\ \pi}{1-cos\ \pi}=\frac{(-1)^2}{1-(-1)} = \frac{1}{2}$

1 Answer

+3 votes
Best answer
$

\lim_{x\rightarrow \pi } (1+\cos x)/\tan ^{2}x $

applying l hospital

$ \lim_{x\rightarrow \pi } (-\sin x)/2*\tan x*sec^{2}x $

it will be

$\lim_{x\rightarrow \pi } (-1)/2*\sec x$

substituting ans will be 1/2
answered by Boss (9.1k points)  
selected by

Related questions

0 votes
1 answer
1
asked in Mathematical Logic by Prateek kumar Loyal (4.8k points)   | 48 views
+2 votes
1 answer
2
asked in Mathematical Logic by Prateek kumar Loyal (4.8k points)   | 86 views
0 votes
0 answers
3
asked in Mathematical Logic by Prateek kumar Loyal (4.8k points)   | 60 views
Top Users Feb 2017
  1. Arjun

    5410 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3952 Points

  4. Aboveallplayer

    3086 Points

  5. Debashish Deka

    2564 Points

  6. sriv_shubham

    2318 Points

  7. Smriti012

    2240 Points

  8. Arnabi

    2008 Points

  9. mcjoshi

    1696 Points

  10. sh!va

    1684 Points

Monthly Topper: Rs. 500 gift card

20,864 questions
26,030 answers
59,704 comments
22,144 users