GATE CSE
First time here? Checkout the FAQ!
x
0 votes
81 views
The function y=|2-3x| is not differential at x=2/3, please prove it.
asked in Calculus by Veteran (11.7k points)   | 81 views
thanks pavan!
habib's method is also correct..since this fn is continuous for x=2/3, we can check directly by finding its derivative and then checking from left side and right side..both methods are fine!!

1 Answer

+3 votes
Best answer

We define the modulus function piecewise as :

F(x)   =   -(2 - 3x)   =   3x - 2   , for x < 2/3  and 

         =    2 - 3x    for x >= 2/3

So in order to check for differentiability , we check for left derivative and right derivative..

Here left derivative is w.r.t F(x)  =  3x - 2..

So d(F(x)) / dx = 0  ==> d/dx(3x - 2)   =   3 ..Hence left derivative is 3 at x = 3 [In fact at any point for x <= 2/3]

Now coming to right derivative , we have : F(x)  =   2 - 3x

So d(F(x)) / dx = 0  ==> d/dx(2 - 3x)   =   -3..Hence right derivative is -3 at x = 3 [In fact at any point x >= 2/3]

As at x = 2/3 , Left derivative != Right derivative , so we can conclude

F(x) is not differentiable at x = 2/3

answered by Veteran (60.3k points)  
edited by
we should find the left hand limit and right hand limit at that point to prove it is not differentiable
Top Users Jan 2017
  1. Debashish Deka

    9872 Points

  2. sudsho

    5596 Points

  3. Habibkhan

    5498 Points

  4. Bikram

    5350 Points

  5. Vijay Thakur

    4508 Points

  6. Arjun

    4458 Points

  7. Sushant Gokhale

    4410 Points

  8. saurabh rai

    4236 Points

  9. santhoshdevulapally

    3906 Points

  10. Kapil

    3892 Points

Monthly Topper: Rs. 500 gift card

19,481 questions
24,261 answers
54,210 comments
20,405 users