GATE CSE
First time here? Checkout the FAQ!
x
0 votes
154 views
The function y=|2-3x| is not differential at x=2/3, please prove it.
asked in Calculus by Veteran (14.7k points)   | 154 views
thanks pavan!
habib's method is also correct..since this fn is continuous for x=2/3, we can check directly by finding its derivative and then checking from left side and right side..both methods are fine!!

1 Answer

+3 votes
Best answer

We define the modulus function piecewise as :

F(x)   =   -(2 - 3x)   =   3x - 2   , for x < 2/3  and 

         =    2 - 3x    for x >= 2/3

So in order to check for differentiability , we check for left derivative and right derivative..

Here left derivative is w.r.t F(x)  =  3x - 2..

So d(F(x)) / dx = 0  ==> d/dx(3x - 2)   =   3 ..Hence left derivative is 3 at x = 3 [In fact at any point for x <= 2/3]

Now coming to right derivative , we have : F(x)  =   2 - 3x

So d(F(x)) / dx = 0  ==> d/dx(2 - 3x)   =   -3..Hence right derivative is -3 at x = 3 [In fact at any point x >= 2/3]

As at x = 2/3 , Left derivative != Right derivative , so we can conclude

F(x) is not differentiable at x = 2/3

answered by Veteran (66.5k points)  
edited by
we should find the left hand limit and right hand limit at that point to prove it is not differentiable


Top Users Jun 2017
  1. Bikram

    3912 Points

  2. Arnab Bhadra

    1550 Points

  3. Hemant Parihar

    1502 Points

  4. Niraj Singh 2

    1501 Points

  5. Debashish Deka

    1480 Points

  6. junaid ahmad

    1432 Points

  7. pawan kumarln

    1366 Points

  8. Arjun

    1246 Points

  9. Rupendra Choudhary

    1242 Points

  10. rahul sharma 5

    1240 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 Jun 26 - Jul 02
  1. pawan kumarln

    498 Points

  2. akankshadewangan24

    404 Points

  3. Arjun

    286 Points

  4. Debashish Deka

    234 Points

  5. Abhisek Das

    230 Points


23,435 questions
30,153 answers
67,633 comments
28,503 users