GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
67 views

Let $A$ and $B$ be finite sets such that $A \subseteq B$. Then, what is the value of the expression:

$$\Sigma_{C:A \subseteq C \subseteq B} (-1)^{\mid C \setminus A \mid,}$$

Where $C \setminus A=\{x \in C : x \notin A \}$?

  1. Always 0
  2. Always 1
  3. 0 if $A=B$ and 1 otherwise
  4. 1 if $A=B$ and 0 otherwise
  5. Depends on the soze of the universe
asked in Set Theory & Algebra by Veteran (76k points)   | 67 views

2 Answers

+2 votes

Let set B be of cardinality n. 

Total subsets(A) possible are : nC0 + nC1 + nC2 + ... + nCn. i.e nCr number of subsets exist with r cardinality.

Note that for each r, summation has $2^{n-r}$ terms to sum. 

Case 1: r= 0. Which is $\Phi$ .

Total terms = $2^{n}$. 

Total terms when |C\A| even = nC0 + nC2 + nC4 + ... + nC(n-1) { if n is odd, nCn otherwise } 

Similarly for odd = 2ⁿ - |C\A| 

Even contributes to 1 whereas odd contributes to -1.

Therefore Summation = 0 as 2ⁿ terms are present with half as 1 & half as -1. 

Case 2: r = 1 , total terms = $2^{n-1}$

Total terms when |C\A| even = nCr + nC(r+2) + ... + nCn  { if n is odd n-1 otherwise } 

Total terms when |C\A| odd = nC(r+1) + nC(r+3) + ... 

Again we are end up with total even terms with half contributing to 1 & half -1. 

same situation will arise for every r ≠ n.(as for such r, $2^{r}$ is always even) i.e summation = 0 for all r, r ≠ n. 

Case n: r = n , total terms = $2^{n-n}$ = 1. This is the case when B = A. 

THEREFORE |C\A| = 0 as both are equal. 

Summation = 1. 

therefore answer is : 1 if A = B, 0 otherwise.  

Lemme know if I'm wrong. 

answered by Loyal (3.2k points)  
perfect ! rohit (y)
Thank you. :)
+1 vote

Very good QS.

answered by Veteran (43.6k points)  


Top Users Mar 2017
  1. rude

    4272 Points

  2. sh!va

    2994 Points

  3. Rahul Jain25

    2804 Points

  4. Kapil

    2608 Points

  5. Debashish Deka

    2254 Points

  6. 2018

    1514 Points

  7. Vignesh Sekar

    1344 Points

  8. Akriti sood

    1262 Points

  9. Bikram

    1258 Points

  10. Sanjay Sharma

    1016 Points

Monthly Topper: Rs. 500 gift card

21,454 questions
26,775 answers
60,982 comments
22,994 users