GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
237 views

1)For three events A, B and C, we know that

  • A and C are independent
    B and C are independent
    A and B are disjoint
    P(A∪C)=2/3 P(B∪C)=3/4 P(A∪B∪C)=11/12


P(A)=___________  ans  1/3

 

2)Consider independent trails consisting of rolling a pair of fair dice, over and over. What is the probability that a sum of 5 appears before sum of 7? ans 2/5

 

asked in Probability by Active (2.1k points)   | 237 views

1 Answer

+4 votes
Best answer

Answer to question no 1 :

Given A and B are disjoint , so P( A ∩  B )  = 0

Given B and C are independent  =  P(B ∩  C)  =  P(B) . P(C)

          A and C are independent  = P(A ∩  C)  = P(A) . P(C)

As A and B are disjoint , then A , B and C will obviosuly be disjoint which is the trick of the question.

We know , 

           P(A U B U C) = P(A) + P(B) + P(C) - P( A ∩  B ) - P(B ∩  C) - P(A  ∩  C)  +  P(A ∩  B   ∩  C)

==>     11 / 12        =  x + y + z  - yz - xz   [ Say ]   ..............(1)

          P(B U C)      =   3 /4

==>    P(B) + P(C) - P(B ∩  C)  =  3 /4 

==>     y + z  - yz    =   3 / 4      .....(2)

Substituting in (1) , we have :

==>   11 / 12     =   x +  ( 3 / 4 )  -  xz  .............(3)

  

Also   P(A U C)  =  2 / 3

==>   P(A) + P(C) - P(A).P(C)  =  2 / 3

==>   x  + z  -  xz   = 2 / 3

==>   x  -  xz   =  2/3 - z

So substituting this in (3) , we have :

       11 / 12  =  (2 / 3   -  z)  +  (3 / 4)

==>  z         =  (2 / 3 + 3 / 4  - 11 / 12)

==>  z         =   6 / 12

 

Now x - xz  =  2/3 - z

==> x - 1/2x  = 2/3 - 1 /2

==> 1/2 x    = 1 / 6

==>  x       =  1 / 3

Therefore P(A)  =  1 / 3

 

Answer to 2nd question :

You are interested that the game will end where you first get sum of 5, and that it will happen before the first "sum if 7". Hence, by noting that the first event has 4 elementary outcomes(i.e. of sum of 5) while the second has 6(i.e. of sum of 7)..

So this can be done by in the first "n-1" trials , the remaining 26 ( 36 - 4 - 6 ) outcomes can come and in the nth trial , we need to ensure that only these 4 outcomes which constitute sum of 5 comes..That way we can ensure that sum of 5 will come definitely before sum of 7..So an infinite G.P. will perform as n can be any natural number ranging from 1 to infinity [In the very 1st trial we can get sum of 5 and then we are done..But we need to consider all cases m so infinite G.P will form as ] :

P(5 comes before 7 as sum in 2 dices)  =  (4 / 36) + (26 / 36) * (4 / 36) + (26 / 36)2 * (4 / 36) ..............to infinity

                                                          =  (4 /  36) [ 1 + (26 / 36) + (26 / 36)2 + .................. ]

                                                          =  ( 1 / 9 ) * [1 / ( 1  -  (26 / 36) }

                                                         =    1 / 9 * (36 / 10) 

                                                         =    4 / 10

                                                         =    2 / 5

Hence 2 / 5 is required probability here..

answered by Veteran (66.5k points)  
selected by

Related questions

+1 vote
1 answer
1
asked in Probability by srestha Veteran (54.8k points)   | 113 views


Top Users Jun 2017
  1. Bikram

    3704 Points

  2. Hemant Parihar

    1484 Points

  3. junaid ahmad

    1432 Points

  4. Arnab Bhadra

    1408 Points

  5. Niraj Singh 2

    1311 Points

  6. Rupendra Choudhary

    1194 Points

  7. rahul sharma 5

    1132 Points

  8. Debashish Deka

    1004 Points

  9. srestha

    932 Points

  10. Arjun

    930 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 Jun 19 - 25
  1. Bikram

    1960 Points

  2. Niraj Singh 2

    1306 Points

  3. junaid ahmad

    502 Points

  4. sudsho

    410 Points

  5. akankshadewangan24

    388 Points


23,355 questions
30,066 answers
67,371 comments
28,382 users