GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
290 views

1)For three events A, B and C, we know that

  • A and C are independent
    B and C are independent
    A and B are disjoint
    P(A∪C)=2/3 P(B∪C)=3/4 P(A∪B∪C)=11/12


P(A)=___________  ans  1/3

 

2)Consider independent trails consisting of rolling a pair of fair dice, over and over. What is the probability that a sum of 5 appears before sum of 7? ans 2/5

 

asked in Probability by Active (2.1k points)   | 290 views

1 Answer

+4 votes
Best answer

Answer to question no 1 :

Given A and B are disjoint , so P( A ∩  B )  = 0

Given B and C are independent  =  P(B ∩  C)  =  P(B) . P(C)

          A and C are independent  = P(A ∩  C)  = P(A) . P(C)

As A and B are disjoint , then A , B and C will obviosuly be disjoint which is the trick of the question.

We know , 

           P(A U B U C) = P(A) + P(B) + P(C) - P( A ∩  B ) - P(B ∩  C) - P(A  ∩  C)  +  P(A ∩  B   ∩  C)

==>     11 / 12        =  x + y + z  - yz - xz   [ Say ]   ..............(1)

          P(B U C)      =   3 /4

==>    P(B) + P(C) - P(B ∩  C)  =  3 /4 

==>     y + z  - yz    =   3 / 4      .....(2)

Substituting in (1) , we have :

==>   11 / 12     =   x +  ( 3 / 4 )  -  xz  .............(3)

  

Also   P(A U C)  =  2 / 3

==>   P(A) + P(C) - P(A).P(C)  =  2 / 3

==>   x  + z  -  xz   = 2 / 3

==>   x  -  xz   =  2/3 - z

So substituting this in (3) , we have :

       11 / 12  =  (2 / 3   -  z)  +  (3 / 4)

==>  z         =  (2 / 3 + 3 / 4  - 11 / 12)

==>  z         =   6 / 12

 

Now x - xz  =  2/3 - z

==> x - 1/2x  = 2/3 - 1 /2

==> 1/2 x    = 1 / 6

==>  x       =  1 / 3

Therefore P(A)  =  1 / 3

 

Answer to 2nd question :

You are interested that the game will end where you first get sum of 5, and that it will happen before the first "sum if 7". Hence, by noting that the first event has 4 elementary outcomes(i.e. of sum of 5) while the second has 6(i.e. of sum of 7)..

So this can be done by in the first "n-1" trials , the remaining 26 ( 36 - 4 - 6 ) outcomes can come and in the nth trial , we need to ensure that only these 4 outcomes which constitute sum of 5 comes..That way we can ensure that sum of 5 will come definitely before sum of 7..So an infinite G.P. will perform as n can be any natural number ranging from 1 to infinity [In the very 1st trial we can get sum of 5 and then we are done..But we need to consider all cases m so infinite G.P will form as ] :

P(5 comes before 7 as sum in 2 dices)  =  (4 / 36) + (26 / 36) * (4 / 36) + (26 / 36)2 * (4 / 36) ..............to infinity

                                                          =  (4 /  36) [ 1 + (26 / 36) + (26 / 36)2 + .................. ]

                                                          =  ( 1 / 9 ) * [1 / ( 1  -  (26 / 36) }

                                                         =    1 / 9 * (36 / 10) 

                                                         =    4 / 10

                                                         =    2 / 5

Hence 2 / 5 is required probability here..

answered by Veteran (68.7k points)  
selected by

Related questions

+1 vote
0 answers
1
asked ago in Probability by Beyonder (497 points)   | 19 views


Top Users Aug 2017
  1. ABKUNDAN

    4658 Points

  2. Bikram

    4138 Points

  3. akash.dinkar12

    3144 Points

  4. rahul sharma 5

    2928 Points

  5. manu00x

    2682 Points

  6. makhdoom ghaya

    2390 Points

  7. just_bhavana

    2058 Points

  8. Tesla!

    1782 Points

  9. pawan kumarln

    1574 Points

  10. learner_geek

    1558 Points


24,892 questions
31,967 answers
74,214 comments
30,083 users