GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
161 views

1)For three events A, B and C, we know that

  • A and C are independent
    B and C are independent
    A and B are disjoint
    P(A∪C)=2/3 P(B∪C)=3/4 P(A∪B∪C)=11/12


P(A)=___________  ans  1/3

 

2)Consider independent trails consisting of rolling a pair of fair dice, over and over. What is the probability that a sum of 5 appears before sum of 7? ans 2/5

 

asked in Probability by Active (2k points)   | 161 views

1 Answer

+4 votes
Best answer

Answer to question no 1 :

Given A and B are disjoint , so P( A ∩  B )  = 0

Given B and C are independent  =  P(B ∩  C)  =  P(B) . P(C)

          A and C are independent  = P(A ∩  C)  = P(A) . P(C)

As A and B are disjoint , then A , B and C will obviosuly be disjoint which is the trick of the question.

We know , 

           P(A U B U C) = P(A) + P(B) + P(C) - P( A ∩  B ) - P(B ∩  C) - P(A  ∩  C)  +  P(A ∩  B   ∩  C)

==>     11 / 12        =  x + y + z  - yz - xz   [ Say ]   ..............(1)

          P(B U C)      =   3 /4

==>    P(B) + P(C) - P(B ∩  C)  =  3 /4 

==>     y + z  - yz    =   3 / 4      .....(2)

Substituting in (1) , we have :

==>   11 / 12     =   x +  ( 3 / 4 )  -  xz  .............(3)

  

Also   P(A U C)  =  2 / 3

==>   P(A) + P(C) - P(A).P(C)  =  2 / 3

==>   x  + z  -  xz   = 2 / 3

==>   x  -  xz   =  2/3 - z

So substituting this in (3) , we have :

       11 / 12  =  (2 / 3   -  z)  +  (3 / 4)

==>  z         =  (2 / 3 + 3 / 4  - 11 / 12)

==>  z         =   6 / 12

 

Now x - xz  =  2/3 - z

==> x - 1/2x  = 2/3 - 1 /2

==> 1/2 x    = 1 / 6

==>  x       =  1 / 3

Therefore P(A)  =  1 / 3

 

Answer to 2nd question :

You are interested that the game will end where you first get sum of 5, and that it will happen before the first "sum if 7". Hence, by noting that the first event has 4 elementary outcomes(i.e. of sum of 5) while the second has 6(i.e. of sum of 7)..

So this can be done by in the first "n-1" trials , the remaining 26 ( 36 - 4 - 6 ) outcomes can come and in the nth trial , we need to ensure that only these 4 outcomes which constitute sum of 5 comes..That way we can ensure that sum of 5 will come definitely before sum of 7..So an infinite G.P. will perform as n can be any natural number ranging from 1 to infinity [In the very 1st trial we can get sum of 5 and then we are done..But we need to consider all cases m so infinite G.P will form as ] :

P(5 comes before 7 as sum in 2 dices)  =  (4 / 36) + (26 / 36) * (4 / 36) + (26 / 36)2 * (4 / 36) ..............to infinity

                                                          =  (4 /  36) [ 1 + (26 / 36) + (26 / 36)2 + .................. ]

                                                          =  ( 1 / 9 ) * [1 / ( 1  -  (26 / 36) }

                                                         =    1 / 9 * (36 / 10) 

                                                         =    4 / 10

                                                         =    2 / 5

Hence 2 / 5 is required probability here..

answered by Veteran (65k points)  
selected by

Related questions

0 votes
0 answers
1
asked ago in Probability by Vignesh Sekar (323 points)   | 20 views
Top Users Feb 2017
  1. Arjun

    5278 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3942 Points

  4. Aboveallplayer

    3086 Points

  5. Debashish Deka

    2378 Points

  6. sriv_shubham

    2308 Points

  7. Smriti012

    2236 Points

  8. Arnabi

    2008 Points

  9. sh!va

    1672 Points

  10. mcjoshi

    1660 Points

Monthly Topper: Rs. 500 gift card

20,857 questions
26,009 answers
59,671 comments
22,107 users