GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
197 views

1)For three events A, B and C, we know that

  • A and C are independent
    B and C are independent
    A and B are disjoint
    P(A∪C)=2/3 P(B∪C)=3/4 P(A∪B∪C)=11/12


P(A)=___________  ans  1/3

 

2)Consider independent trails consisting of rolling a pair of fair dice, over and over. What is the probability that a sum of 5 appears before sum of 7? ans 2/5

 

asked in Probability by Active (2k points)   | 197 views

1 Answer

+4 votes
Best answer

Answer to question no 1 :

Given A and B are disjoint , so P( A ∩  B )  = 0

Given B and C are independent  =  P(B ∩  C)  =  P(B) . P(C)

          A and C are independent  = P(A ∩  C)  = P(A) . P(C)

As A and B are disjoint , then A , B and C will obviosuly be disjoint which is the trick of the question.

We know , 

           P(A U B U C) = P(A) + P(B) + P(C) - P( A ∩  B ) - P(B ∩  C) - P(A  ∩  C)  +  P(A ∩  B   ∩  C)

==>     11 / 12        =  x + y + z  - yz - xz   [ Say ]   ..............(1)

          P(B U C)      =   3 /4

==>    P(B) + P(C) - P(B ∩  C)  =  3 /4 

==>     y + z  - yz    =   3 / 4      .....(2)

Substituting in (1) , we have :

==>   11 / 12     =   x +  ( 3 / 4 )  -  xz  .............(3)

  

Also   P(A U C)  =  2 / 3

==>   P(A) + P(C) - P(A).P(C)  =  2 / 3

==>   x  + z  -  xz   = 2 / 3

==>   x  -  xz   =  2/3 - z

So substituting this in (3) , we have :

       11 / 12  =  (2 / 3   -  z)  +  (3 / 4)

==>  z         =  (2 / 3 + 3 / 4  - 11 / 12)

==>  z         =   6 / 12

 

Now x - xz  =  2/3 - z

==> x - 1/2x  = 2/3 - 1 /2

==> 1/2 x    = 1 / 6

==>  x       =  1 / 3

Therefore P(A)  =  1 / 3

 

Answer to 2nd question :

You are interested that the game will end where you first get sum of 5, and that it will happen before the first "sum if 7". Hence, by noting that the first event has 4 elementary outcomes(i.e. of sum of 5) while the second has 6(i.e. of sum of 7)..

So this can be done by in the first "n-1" trials , the remaining 26 ( 36 - 4 - 6 ) outcomes can come and in the nth trial , we need to ensure that only these 4 outcomes which constitute sum of 5 comes..That way we can ensure that sum of 5 will come definitely before sum of 7..So an infinite G.P. will perform as n can be any natural number ranging from 1 to infinity [In the very 1st trial we can get sum of 5 and then we are done..But we need to consider all cases m so infinite G.P will form as ] :

P(5 comes before 7 as sum in 2 dices)  =  (4 / 36) + (26 / 36) * (4 / 36) + (26 / 36)2 * (4 / 36) ..............to infinity

                                                          =  (4 /  36) [ 1 + (26 / 36) + (26 / 36)2 + .................. ]

                                                          =  ( 1 / 9 ) * [1 / ( 1  -  (26 / 36) }

                                                         =    1 / 9 * (36 / 10) 

                                                         =    4 / 10

                                                         =    2 / 5

Hence 2 / 5 is required probability here..

answered by Veteran (65.9k points)  
selected by

Related questions

0 votes
1 answer
1
asked in Probability by Arnabi Boss (5.8k points)   | 27 views


Top Users Apr 2017
  1. akash.dinkar12

    3660 Points

  2. Divya Bharti

    2580 Points

  3. Deepthi_ts

    2040 Points

  4. rude

    1966 Points

  5. Tesla!

    1768 Points

  6. Debashish Deka

    1614 Points

  7. Shubham Sharma 2

    1610 Points

  8. Prashant.

    1492 Points

  9. Arjun

    1472 Points

  10. Arunav Khare

    1464 Points

Monthly Topper: Rs. 500 gift card

22,088 questions
28,063 answers
63,298 comments
24,173 users