GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
93 views

In a tournament with 7 teams, each team plays one match with every other team. For each match, the team earns two points if it wins, one point if it ties, and no points if it loses. At the end of all matches, the teams are ordered in the descending order of their total points (the order among the teams with the same total are determined by a whimsical tournament referee). The first three teams in this ordering are then chosen to play in the next round. What is the minimum total number of points a team must earn in order to be guaranteed a place in the next round?

  1. 13
  2. 12
  3. 11
  4. 10
  5. 9
asked in Combinatory by Veteran (77.7k points)  
retagged ago by | 93 views
I think possible with 9 only.

2 Answers

+3 votes

Let the $7$ Teams be $A,B,C,D,E,F,G$ and so each team plays total 6 matches.

Suppose, Team $A$ wins over $E,F,G$ and draws with $B,C,D$ hence total points scored by Team A = $9$ points

Now, Team $B$ wins over $E,F,G$ and draws with $A,C,D$ hence total points scored by Team B = $9$ points

Similarly, happens for next two teams $C$ and $D$ .

Hence, Finalized scores are => 

A = 9
B = 9
C = 9
D = 9
E = ? (Less than or equal to 4)
F = ? ("...")
G = ? ("...")

Given that the order among the teams with the same total are determined by a whimsical tournament referee.

So, He/She can order the top $3$ teams like $ABC$,$ABD$,$BCD$,$ACD$ .......

But, Question says " team must earn in order to be guaranteed a place in the next round "

Hence, Not to depend on that whimsical referee, the minimum total number of points a team must earn in order to be guaranteed a place in the next round = $9+1$ = $10$ points

answered by Veteran (47.4k points)  
why extra 1 is added with 9?
Beacause that will guarantee the top 3 positions and there is no need to depend on referee.
0 votes

 

If someone wants to get into the next round he/she must secure at least 3rd position. That means that a team must earn as many points as the $3$rd team does to keep alive the hope of going into the next round. (sometimes +1 , we will get to that later.)

We assume that these winners are in the order $A\rightarrow B\rightarrow C$.

Now we will try to increase the points of team $C$ such that $\text{points}(A,B) \geq C$ and $C$ also maintain $3$rd position.

Consider teams $A,B,C$

There can be a situation when winners $A,B,C$ all three team beat $D,E,F,G$ and play draw among them. Then $A,B,C$ will get $10$ points each.

  • $\Rightarrow$ So, $3$rd team $C$ can get maximum $10$ points.

$C$ can not get $11$ points. Because in that case it has to beat one of the winners , and it will move to higher position but we need $C$ at 3rd posotion only.

What happens to $D$ ? the $4$th position holder ? He can get maximum $6$ after $\text{three}$ consecutive loss to $A,B \text{ and }C$ by beating $E,F,G$.

  • $\Rightarrow$ So, If a team gets $10$ points , that team definitely get into the next round.
  • Points of $C$ and $D$ are not equal in this case and we need not worry about referee.
answered by Veteran (48.1k points)  
edited by


Top Users Jun 2017
  1. Bikram

    3704 Points

  2. Hemant Parihar

    1484 Points

  3. junaid ahmad

    1432 Points

  4. Arnab Bhadra

    1408 Points

  5. Niraj Singh 2

    1311 Points

  6. Rupendra Choudhary

    1194 Points

  7. rahul sharma 5

    1132 Points

  8. Debashish Deka

    994 Points

  9. srestha

    932 Points

  10. Arjun

    930 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 Jun 19 - 25
  1. Bikram

    1960 Points

  2. Niraj Singh 2

    1306 Points

  3. junaid ahmad

    502 Points

  4. sudsho

    410 Points

  5. akankshadewangan24

    388 Points


23,355 questions
30,066 answers
67,371 comments
28,382 users