GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
194 views

Que:- 
The variance of the random variable X with P.D.F  f(x)=0.5|x| e-|x| is ___?

asked in Probability by Veteran (14.7k points)   | 194 views
answer $6$ ???
yes 6, i need detailed solution please
writing it...long sol
updated !

1 Answer

+14 votes
Best answer

$$\large f(x) = \begin{cases} \\ {-} \; 0.5.{\color{red}{x}}.\mathbf e^{\color{red}{x}} & , x \leq 0 \\ \\ {+} \; 0.5.{\color{red}{x}}.\mathbf e^{\color{red}{-x}} & , x \geq 0 \\ \\ \end{cases}$$

$$\begin{align*} E(x) & = \int_{- \infty}^{+\infty}x.f(x).dx \\ & =\int_{- \infty}^{0}x.f(x).dx + \int_{0}^{+\infty}x.f(x).dx \\ & =\int_{- \infty}^{0}x.\left [ -0.5.x.e^x \right ].dx+ \int_{0}^{+\infty}x.\left [ 0.5.x.e^{-x} \right ].dx \\ & =\int_{0}^{- \infty}\left [ 0.5.x^2.e^x \right ].dx + {\color{red}{\int_{0}^{-\infty}\left [ 0.5.y^2.e^{y} \right ].\left ( -dy \right )}} \;\; \left \{ \text{putting x = -y} \right \} \\ &= 0 \\ \end{align*}$$

$$\begin{align*} E(X^{2}) & = \int_{- \infty}^{+\infty}x^2.f(x).dx \\ & =\int_{- \infty}^{0}x^2.f(x).dx + \int_{0}^{+\infty}x^2.f(x).dx \\ & =\int_{- \infty}^{0}x^2.\left [ -0.5.x.e^x \right ].dx+ \int_{0}^{+\infty}x^2.\left [ 0.5.x.e^{-x} \right ].dx \\ & =\int_{0}^{- \infty}\left [ 0.5.x^3.e^x \right ].dx + {\color{red}{\int_{0}^{-\infty}\left [ 0.5.(-y)^3.e^{y} \right ].\left ( -dy \right )}} \;\; \left \{ \text{putting x = -y} \right \} \\ &= \int_{0}^{- \infty}\left [x^3.e^x \right ].dx \;\; \left \{ \text{y is dummy variable only} \right \} \\ &= \left [ (x^3 - 3x^2 + 6x - 6)e^x \right ]_0^{-\infty} \\ &=6 \\ \end{align*}$$

$$\begin{align*} \text{VAR(X)} & = E(X^2) - \left [ E(X) \right ]^2 \\ & = 6 - 0 \\ &= 6\\ \end{align*}$$


NOTE

$$\int {x^n e^x dx} = \bigg[\sum\limits_{k = 0}^n {( - 1)^{n - k} \frac{{n!}}{{k!}}x^k } \bigg]e^x + C.$$


$$\color{maroon}{\begin{align*} &\text{Using the idea of ODD / EVEN function} \\ &\Rightarrow f(x) \;\; \text{is EVEN} \\ &\Rightarrow x.f(x) \;\; \text{is ODD} \\ &\Rightarrow \int_{-\infty}^{+\infty}xf(x)dx = 0 \\ &\Rightarrow E(X) = 0 \\ \\ \text{Now} \\ &\Rightarrow x^2.f(x) \;\; \text{is EVEN} \\ &\Rightarrow E(X^2) = \int_{-\infty}^{+\infty}x^2f(x)dx = 2.\int_{0}^{+\infty}x^2f(x)dx \\ &\Rightarrow E(X^2) = 2.\int_{0}^{+\infty}0.5.x^3.e^{-x}dx \\ &\Rightarrow E(X^2) = \int_{0}^{+\infty}x^3.e^{-x}dx \\ &\Rightarrow E(X^2) = 6 \\ \end{align*}}$$

answered by Veteran (48.6k points)  
edited by
I solved this question using the definitions of ODD and Even functions :) :)
I wanted to get it solved using other way. you solved it using both ways thanks a lot!!
QS was meant to be done in ODD/EVEN way


Top Users Jun 2017
  1. Bikram

    3912 Points

  2. Arnab Bhadra

    1526 Points

  3. Hemant Parihar

    1502 Points

  4. Niraj Singh 2

    1501 Points

  5. Debashish Deka

    1480 Points

  6. junaid ahmad

    1432 Points

  7. pawan kumarln

    1286 Points

  8. Rupendra Choudhary

    1242 Points

  9. rahul sharma 5

    1240 Points

  10. Arjun

    1232 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 Jun 26 - Jul 02
  1. pawan kumarln

    418 Points

  2. akankshadewangan24

    334 Points

  3. Arjun

    272 Points

  4. Debashish Deka

    234 Points

  5. Abhisek Das

    230 Points


23,433 questions
30,149 answers
67,606 comments
28,485 users