GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
19 views

A group of war prisoners are trying to escape from a prison. They have thoroughly planned teh escape from the prison itself, and after that they hope to find shelter in a nearby village. However, the village (marked as $B$, see picture below) and the prison (marked as $A$) are separated by a canyon which is also guarded by soldiers (marked as $S$). These soldiers sit in their pickets and rarely walk; the range of view of each soldier is limited to exactly 100 meters. Thus, depending on the locations of soldiers, it may be possible to pass the canyon safely, keeping the distance to the closest soldier strictly larger than 100 meters from any moment. The situation is depicted in the following picture, where the circles around $S$ indicate the range of view.

Provide an algorithm to determine if the prisoners  can pass the canyon unnoticed, given the width and the length of a canyon and teh coordinated of every soldier in the canyon, and assuming that soldiers do not change their locations ($Hint$: Model this as a graph, with soldiers represented by the vertices.)

asked in Others by Veteran (76k points)   | 19 views

Please log in or register to answer this question.



Top Users Mar 2017
  1. rude

    4272 Points

  2. sh!va

    2994 Points

  3. Rahul Jain25

    2804 Points

  4. Kapil

    2608 Points

  5. Debashish Deka

    2254 Points

  6. 2018

    1514 Points

  7. Vignesh Sekar

    1344 Points

  8. Akriti sood

    1262 Points

  9. Bikram

    1258 Points

  10. Sanjay Sharma

    1016 Points

Monthly Topper: Rs. 500 gift card

21,454 questions
26,775 answers
60,982 comments
22,994 users