GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
27 views

A group of war prisoners are trying to escape from a prison. They have thoroughly planned teh escape from the prison itself, and after that they hope to find shelter in a nearby village. However, the village (marked as $B$, see picture below) and the prison (marked as $A$) are separated by a canyon which is also guarded by soldiers (marked as $S$). These soldiers sit in their pickets and rarely walk; the range of view of each soldier is limited to exactly 100 meters. Thus, depending on the locations of soldiers, it may be possible to pass the canyon safely, keeping the distance to the closest soldier strictly larger than 100 meters from any moment. The situation is depicted in the following picture, where the circles around $S$ indicate the range of view.

Provide an algorithm to determine if the prisoners  can pass the canyon unnoticed, given the width and the length of a canyon and teh coordinated of every soldier in the canyon, and assuming that soldiers do not change their locations ($Hint$: Model this as a graph, with soldiers represented by the vertices.)

asked in Others by Veteran (79.1k points)   | 27 views

Please log in or register to answer this question.



Top Users Aug 2017
  1. Bikram

    4892 Points

  2. ABKUNDAN

    4704 Points

  3. akash.dinkar12

    3480 Points

  4. rahul sharma 5

    3158 Points

  5. manu00x

    3012 Points

  6. makhdoom ghaya

    2470 Points

  7. just_bhavana

    2382 Points

  8. stblue

    2130 Points

  9. Tesla!

    2066 Points

  10. joshi_nitish

    1758 Points


25,009 questions
32,131 answers
74,800 comments
30,179 users