GATE CSE
First time here? Checkout the FAQ!
x
0 votes
13 views
Let $\Sigma - \{0, 1\}$. Let $A, \: B$ be arbitrary subsets of $\Sigma^*$. We define the following operatins on such sets:

$$ A+B :=  \{ w \in \Sigma^* \mid w \in A \text{ or } w \in B \}$$

$$A \cdot B  :=  \{ uv \in \Sigma^* \mid u \in A \text{ and } v \in B \} $$

$$ 2A  :=  \{ ww \in \Sigma^* \mid w \in A \}$$

Is it true that $(A+B) \cdot (A+B) = A \cdot A + B \cdot B +2(A \cdot B)$ for all choices of $A$ and $B$? If yes, give a proof. If not, provide suitable $A$ and $B$ for which this equation fails.
asked in Others by Veteran (76.3k points)   | 13 views

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.


Top Users Apr 2017
  1. akash.dinkar12

    3660 Points

  2. Divya Bharti

    2576 Points

  3. Deepthi_ts

    2040 Points

  4. rude

    1966 Points

  5. Tesla!

    1768 Points

  6. Debashish Deka

    1614 Points

  7. Shubham Sharma 2

    1610 Points

  8. Arunav Khare

    1464 Points

  9. Arjun

    1440 Points

  10. Kapil

    1426 Points

Monthly Topper: Rs. 500 gift card

22,084 questions
28,059 answers
63,275 comments
24,158 users