GATE CSE
First time here? Checkout the FAQ!
x
0 votes
43 views

For this proof ,proving

$\Rightarrow$ If Graph $G$ is eulerian then degree of each vertex is even with atmost one trivial component.

As $G$ is Eulerian ,it means it **must not** repeat Edges but can repeat vertices.Now for the Eulerian (path) traversal ,we pass through that vertex using two incident edges,one for entry and other for exit.

 

 

Then what is wrong  in this graph?

 

 

Here we have Eulerian path traversal as


$C\rightarrow A \rightarrow B \rightarrow D \rightarrow C \rightarrow F \rightarrow E \rightarrow H \rightarrow G \rightarrow F $

but here degree of $C,F =3$ contradictory....


help me out where i am wrong

 

asked in Graph Theory by (67 points)   | 43 views
there exists eulerian path, but not eulerian circuit
Does Eulerain path do not follow property that every vertex of it must have even degree!!!???
no not

Please log in or register to answer this question.

Top Users Feb 2017
  1. Arjun

    5224 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3748 Points

  4. Aboveallplayer

    2986 Points

  5. Debashish Deka

    2356 Points

  6. sriv_shubham

    2298 Points

  7. Smriti012

    2142 Points

  8. Arnabi

    1998 Points

  9. sh!va

    1654 Points

  10. mcjoshi

    1628 Points

Monthly Topper: Rs. 500 gift card

20,832 questions
25,986 answers
59,623 comments
22,042 users