GATE CSE
First time here? Checkout the FAQ!
x
0 votes
51 views

For this proof ,proving

$\Rightarrow$ If Graph $G$ is eulerian then degree of each vertex is even with atmost one trivial component.

As $G$ is Eulerian ,it means it **must not** repeat Edges but can repeat vertices.Now for the Eulerian (path) traversal ,we pass through that vertex using two incident edges,one for entry and other for exit.

 

 

Then what is wrong  in this graph?

 

 

Here we have Eulerian path traversal as


$C\rightarrow A \rightarrow B \rightarrow D \rightarrow C \rightarrow F \rightarrow E \rightarrow H \rightarrow G \rightarrow F $

but here degree of $C,F =3$ contradictory....


help me out where i am wrong

 

asked in Graph Theory by (143 points)   | 51 views
there exists eulerian path, but not eulerian circuit
Does Eulerain path do not follow property that every vertex of it must have even degree!!!???
no not

Please log in or register to answer this question.

Related questions



Top Users Jul 2017
  1. Bikram

    3960 Points

  2. manu00x

    2464 Points

  3. Debashish Deka

    1848 Points

  4. joshi_nitish

    1654 Points

  5. Arjun

    1290 Points

  6. Hemant Parihar

    1184 Points

  7. Arnab Bhadra

    1100 Points

  8. Shubhanshu

    1052 Points

  9. Ahwan

    900 Points

  10. rahul sharma 5

    702 Points


24,018 questions
30,955 answers
70,327 comments
29,337 users