GATE CSE
First time here? Checkout the FAQ!
x
0 votes
18 views
Consider the funciton $M$ defined as follows:

$M(n) = \begin{cases} n-10 & \text{ if } n > 100 \\ M(M(n+11)) & \text{ if } n \leq 100 \end{cases}$

Compute the following:

M(87)
asked in Others by Veteran (75.6k points)   | 18 views

1 Answer

+1 vote

M(87) $= M(M(98))\\ =M(M(M(109)))\\ =M(M(99))\\ =M(M(M(110)))\\ =M(M(100))\\ =M(M(M(111)))\\ =M(M(101)) = M(91)$

from above we can see that when $90 \leq n \leq 100$ n is incremented by 1 so,

$M(91) = M(92) =M(93) =M(94) =M(95) =M(96) =M(97) =M(98) = M(99) =M(100) = M(101) = 91$ 

 

So, M(87) = 91

answered by Boss (9.4k points)  
Top Users Feb 2017
  1. Arjun

    5396 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3952 Points

  4. Aboveallplayer

    3086 Points

  5. Debashish Deka

    2564 Points

  6. sriv_shubham

    2318 Points

  7. Smriti012

    2240 Points

  8. Arnabi

    2008 Points

  9. mcjoshi

    1696 Points

  10. sh!va

    1684 Points

Monthly Topper: Rs. 500 gift card

20,863 questions
26,023 answers
59,698 comments
22,136 users