GATE CSE
First time here? Checkout the FAQ!
x
0 votes
20 views
Consider the funciton $M$ defined as follows:

$M(n) = \begin{cases} n-10 & \text{ if } n > 100 \\ M(M(n+11)) & \text{ if } n \leq 100 \end{cases}$

Compute the following:

M(87)
asked in Others by Veteran (77.2k points)   | 20 views

1 Answer

+1 vote

M(87) $= M(M(98))\\ =M(M(M(109)))\\ =M(M(99))\\ =M(M(M(110)))\\ =M(M(100))\\ =M(M(M(111)))\\ =M(M(101)) = M(91)$

from above we can see that when $90 \leq n \leq 100$ n is incremented by 1 so,

$M(91) = M(92) =M(93) =M(94) =M(95) =M(96) =M(97) =M(98) = M(99) =M(100) = M(101) = 91$ 

 

So, M(87) = 91

answered by Boss (9.4k points)  


Top Users May 2017
  1. akash.dinkar12

    3154 Points

  2. pawan kumarln

    1636 Points

  3. sh!va

    1600 Points

  4. Arjun

    1360 Points

  5. Bikram

    1322 Points

  6. Devshree Dubey

    1262 Points

  7. Debashish Deka

    1132 Points

  8. Angkit

    1044 Points

  9. LeenSharma

    900 Points

  10. srestha

    710 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. Bikram

    408 Points

  2. pawan kumarln

    262 Points

  3. Ahwan

    236 Points

  4. Arnab Bhadra

    234 Points

  5. LeenSharma

    138 Points


22,772 questions
29,098 answers
65,132 comments
27,639 users