GATE CSE
First time here? Checkout the FAQ!
x
0 votes
21 views
Consider the funciton $M$ defined as follows:

$M(n) = \begin{cases} n-10 & \text{ if } n > 100 \\ M(M(n+11)) & \text{ if } n \leq 100 \end{cases}$

Compute the following:

M(87)
asked in Others by Veteran (79.1k points)   | 21 views

1 Answer

+1 vote

M(87) $= M(M(98))\\ =M(M(M(109)))\\ =M(M(99))\\ =M(M(M(110)))\\ =M(M(100))\\ =M(M(M(111)))\\ =M(M(101)) = M(91)$

from above we can see that when $90 \leq n \leq 100$ n is incremented by 1 so,

$M(91) = M(92) =M(93) =M(94) =M(95) =M(96) =M(97) =M(98) = M(99) =M(100) = M(101) = 91$ 

 

So, M(87) = 91

answered by Boss (9.6k points)  


Top Users Aug 2017
  1. Bikram

    4892 Points

  2. ABKUNDAN

    4704 Points

  3. akash.dinkar12

    3480 Points

  4. rahul sharma 5

    3158 Points

  5. manu00x

    3012 Points

  6. makhdoom ghaya

    2470 Points

  7. just_bhavana

    2382 Points

  8. stblue

    2130 Points

  9. Tesla!

    2066 Points

  10. joshi_nitish

    1758 Points


25,009 questions
32,131 answers
74,801 comments
30,179 users