GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
147 views

In a boxing tournament 2n equally skilled players P1,P2,P3...........P$2^{n}$, are participating.

In each round players are divided in pairs at random and winner from each pair moves in next round. If P5 reaches the semifinals then what is the probability that P1 wins the tournament?

A. $(\frac{1}{2})^{logn}$

B. $\frac{2^{logn-1}}{2^{n}-1}$

C. $\frac{3}{4} * \frac{1}{2^{n}-1}$

D. $\frac{7}{8} * \frac{1}{2^{n}-1}$

asked in Probability by Boss (6.8k points)  
edited by | 147 views

1 Answer

+7 votes
Best answer

Lets take an example.

Suppose there 8 participants P1, P2..................P7, P8.

 

Now, they are saying find the probablity that P wins the tournamant given that P5 reaches semi-finals. 

So, sample space is P5, P, Pj , Pk (i.e. P5, P, Pj , Pare semi-finalists).

 

Now, we would like to find the probablity that P1 wins the tournament given the above sample space.

This means that P1 should reach the semifinals (i.e. P1 should be either one of the P, Pj , Pk).

 

Now, P(P1 is either one of the P, Pj , Pk)

= ( select any two for Pj , Pk  ) /  ( select any three for P, Pj , Pk)

= $\frac{\binom{6}{2}}{\binom{7}{3}}$          .......................................(1)

= $\frac{3}{7}$          

 

Now, we have got P1 in semifinals. So, we need to find probablity that P1 wins the tournament given that semifinalists are P5, P1 , Pj , Pk

P(P1 wins the tournament given that P5, P1 , Pj , Pare semi-finalists) =  $\frac{1}{4}$   .................(2)

 

$\therefore$ P(P1 wins the tournament / P5 reaches semis) = $\frac{1}{4}$ *  $\frac{3}{7}$ =  $\frac{3}{4}$ *  $\frac{1}{7}$

 

This answer matches with answer B.

----------------------------------------------------------------------

Lets generalize the answer.

(A) = $\frac{\binom{2^{n}-2}{2}}{\binom{2^{n}-1}{3}}$       ...........from statement(1) above

(B) = $\frac{1}{4}$   .......................from statement(2) above

 

$\therefore$ P(P1 wins the tournament / P5 reaches semis) = (B) * (A) = $\frac{3}{4} * \frac{1}{2^{n}-1}$

 

answered by Veteran (14.7k points)  
selected by

@sushant,though u solved perfectly,still not getting this part:-(

Now, P(P1 is either one of the P, Pj , Pk)

= ( select any two for Pj , Pk  ) /  ( select any three for P, Pj , Pk)

 

quite good explanation. @sushant! keep it up! and akriti just take a small sample space of maybe 5 players and follow his comment next to his answer. you will get it!
@Akriti. I hope you got the initial sample space P5, Pi, Pj, Pk............(1)

Now, In order that P1 wins tournament, P1 must also reach semis.

So, this is situation: P1, P5, Pj, Pk..................(2)

 

So, whats the probablity of situation in statement (2) given situation in statement (2) is sample space?

So, sample space = 7C3 since you need to select Pi,Pj,Pk

 

Events that account for situation in statement (2) = 6C2

since, you need to select Pj,Pk

 

So, prob = 6C2 / 7C3

@sushant,you are finding the probability that P1 is in semis-right?

then you need to select 3 personns for semis which can be done in 7C3 ways..i got till here.

but how favourable cases are 6C2??does this mean,you have chosen P1 and you are selectig rest 2 in semis..am i right??

Yup. As you know, whenever you are consider favourable events, you should assume that situation.

Related questions

0 votes
0 answers
1
asked ago in Probability by Vignesh Sekar (369 points)   | 20 views
Top Users Feb 2017
  1. Arjun

    5386 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3952 Points

  4. Aboveallplayer

    3086 Points

  5. Debashish Deka

    2564 Points

  6. sriv_shubham

    2318 Points

  7. Smriti012

    2240 Points

  8. Arnabi

    2008 Points

  9. mcjoshi

    1696 Points

  10. sh!va

    1684 Points

Monthly Topper: Rs. 500 gift card

20,863 questions
26,022 answers
59,696 comments
22,133 users