GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
76 views

if $f(x)=\frac{x-1}{x+1}$ , x∈R-{-1}, then f-1(x) is equal to

 

$a. \frac{x-1}{x+1} b.\frac{x+1}{x-1} c.\frac{2}{1+x}$ d.Does Not exist

asked in Graph Theory by Veteran (14.7k points)  
edited by | 76 views

1 Answer

+3 votes
Best answer
  • $f(x)=\frac{x-1}{x+1}$ , here f(1) = 0
  • By assigning $x = 0$ in the given options , none of them results $1$
  • So, it should be none of these gievn options for inverse. And f(x) can never be equal to 1 and $f^{-1}(x)$ does not exist for -1

 

$\begin{align*} &\Rightarrow\frac{y}{1} =\frac{x-1}{x+1} \\ &\Rightarrow \frac{y-1}{y+1} =\frac{(x-1)-(x+1)}{(x-1)+(x+1)} \\ &\Rightarrow\frac{y-1}{y+1} = \frac{-2}{2x} \\ &\text{x and y are dummy only} \\ &\Rightarrow f^{-1}(x) = \frac{1+x}{1-x} \\ \end{align*}$ 

answered by Veteran (48.6k points)  
edited by
sorry! 4th option is doesn't exist. what is your answer (D) or b

f-1(x) does not exist for x=1
so option D is correct..

Awesome! you're right f^-1(x) doesn't exist for 1.
this $\frac{x-1}{x+1}$ fraction  can never be equal to one !


Top Users Jun 2017
  1. Bikram

    3822 Points

  2. Arnab Bhadra

    1526 Points

  3. Hemant Parihar

    1502 Points

  4. Niraj Singh 2

    1491 Points

  5. Debashish Deka

    1440 Points

  6. junaid ahmad

    1432 Points

  7. pawan kumarln

    1278 Points

  8. Rupendra Choudhary

    1242 Points

  9. rahul sharma 5

    1240 Points

  10. Arjun

    1228 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 Jun 26 - Jul 02
  1. pawan kumarln

    410 Points

  2. akankshadewangan24

    282 Points

  3. Arjun

    268 Points

  4. Abhisek Das

    230 Points

  5. Debashish Deka

    194 Points


23,428 questions
30,143 answers
67,576 comments
28,472 users