if $f(x)=\frac{x-1}{x+1}$ , x∈R-{-1}, then f^{-1}(x) is equal to
$a. \frac{x-1}{x+1} b.\frac{x+1}{x-1} c.\frac{2}{1+x}$ d.Does Not exist
f(1) = 0
f(x)
$\begin{align*} &\Rightarrow\frac{y}{1} =\frac{x-1}{x+1} \\ &\Rightarrow \frac{y-1}{y+1} =\frac{(x-1)-(x+1)}{(x-1)+(x+1)} \\ &\Rightarrow\frac{y-1}{y+1} = \frac{-2}{2x} \\ &\text{x and y are dummy only} \\ &\Rightarrow f^{-1}(x) = \frac{1+x}{1-x} \\ \end{align*}$
f^{-1}(x) does not exist for x=1 so option D is correct..
3822 Points
1526 Points
1502 Points
1491 Points
1440 Points
1432 Points
1278 Points
1242 Points
1240 Points
1228 Points
410 Points
282 Points
268 Points
230 Points
194 Points
Gatecse
Just read all discussion here