GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
92 views

Let A = {1,2,3,4}. since each element of P(AxA) is subset of AxA, it is binary relation on A
Assuming each relation in P(AxA) is equally likely to be chosen,

i. what is the probability that a randomly chosen relation is reflexive
a.  1/26
b. 1/24
c. 1/26
d. 1/212
Given Ans: 1/24
ii what is the probability that a randomly chosen relation is Symmetric
a.  1/216
b. 1/24
c. 1/26
d. 1/212
Given Ans: 1/26

asked in Set Theory & Algebra by Veteran (14.4k points)   | 92 views

1 Answer

+5 votes
Best answer

 Total no. of relations on a set A of cardinality n  is $2^{n^{2}}$

i) No. of reflexive relations = $2^{n^{2} - n}$

Probability of reflexive relations = $\large \frac{2^{n^{2} - n}}{2^{n^{2}}}$  = $\large \frac{2^{4^{2} - 4}}{2^{4^{2}}}$

                                             = $\large \frac{1}{16}$

                                            = $\LARGE \frac{1}{2^{4}}$

ii) No. of symmetric relations =$\large 2^{\frac{n^{2}+n}{2}}$

Probability of symmetric relations = $\LARGE \frac{2^{\frac{n^{2}+n}{2}}}{2^{n^{2}}}$ = $\LARGE \frac{2^{\frac{4^{2}+4}{2}}}{2^{4^{2}}}$

                                                 =$\LARGE \frac{1}{64}$

                                                = $\LARGE \frac{1}{2^{6}}$

answered by Active (1.7k points)  
selected by
Perfect!!
great answer Rahul :) can u please tell us the formula for remaining properties also ( transitive, antisymm) also thanks :)

Anti Symmetric = $\LARGE 2^{n}*3^{\frac{n^{2}-n}{2}}$

Asymmetric = $\LARGE 3^{\frac{n^{2}-n}{2}}$

No formula exists for Transitive Relations!

Top Users Feb 2017
  1. Arjun

    5274 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3842 Points

  4. Aboveallplayer

    3086 Points

  5. Debashish Deka

    2378 Points

  6. sriv_shubham

    2308 Points

  7. Smriti012

    2236 Points

  8. Arnabi

    2008 Points

  9. sh!va

    1672 Points

  10. mcjoshi

    1640 Points

Monthly Topper: Rs. 500 gift card

20,846 questions
26,001 answers
59,649 comments
22,098 users