
CS500 Homework #2 Solutions

1. Consider the two languages

L1 = {aibjckd` | i = j ∧ k = `}

L2 = {aibjckd` | i = k ∧ j = `}

Show that L1 is context-free but L2 is not.

Answer. L1 is the concatenation of {anbn} with {cndn}, and each of these is easily seen
to be context-free, e.g. with grammars S → aSb | ε and similarly S → cSd | ε. Since
the context-free languages are closed under concatenation we’re done.

To prove that L2 is not context-free, we prove by contradiction that the pumping
lemma does not hold. Suppose it did with some value of p; then consider the word
w = apbpcpdp. Writing w = uvxyz, we see that for uvixyiz to be in L2 for all i, neither
v nor y can cross a boundary between the blocks of different symbols, since repeating
them would then give a word outside a∗b∗c∗d∗ ⊃ L2. Moreover, if v is in the block of
as or bs, then y must be in the block of cs or ds respectively to keep the corresponding
block the same size. But this implies that x contains either bp or cp, and in either case
since |vy| > 0 this violates the third condition of the pumping lemma, |vxy| ≤ p. �

2. Show that both the context-free languages and the deterministic context-free languages
are closed under intersection with regular languages. That is, suppose R is regular;
show that if L is context-free, then so is L ∩ R, and if L is deterministic context-free,
then so is L ∩R.

Answer. The idea is to run the PDA for L and the DFA for R in parallel, just as we
constructed a DFA for the intersection of two regular languages by running both their
DFAs in parallel and accepting only if both machines accept.

Formally, suppose the PDA for L has finite states Q1, stack alphabet Γ, transition
function δ1, and accepting states F1, and the DFA for R has similarly Q2, δ2, and F2.
Assume for simplicity that the PDA for L reads a input symbol on every step. Then
the PDA for L∩R will have states Q = Q1×Q2 and transition function δ : Q×Σ×Γε →
Q × Γε, where the new state is (δ1(q1, a), δ2(q2, a)) and we use δ1 to determine what,
if anything, we push on the stack. Our set of accepting states is F = F1 × F2 ⊂ Q.
The resulting PDA is deterministic if the original PDA for L is, so L ∩R is a CFL or
DCFL if L is. �

1

3. Inspired by the previous problem, let L be the parenthesis language {ε, (), (()), ()(), . . .}
and R the regular language where neither ‘(’ nor ‘)’ can occur more than 3 times in a
row. Give a context-free grammar for L ∩R.

Answer. The idea is for the variables to “know” how many left or right parentheses
there already are next to them. Let there be 9 variables, {S`,r | 0 ≤ `, r < 3} plus the
start symbol S. Then S`,r means “a nonempty string with ` ‘(’s to its left and r ‘)’s to
its right.” The simplest grammar I found is

S`,r → (S`+1,1)S0,r | (S`+1,r+1) | ()S0,r | ()

where we disallow any rules where ` ≥ 3 or r ≥ 3 on the right-hand side. Note
that we don’t allow S`,r to disappear, since then we wouldn’t know whether r′ in
S`,r → (S`+1,r′)S0,r should be 1 or r + 1. Finally, we have

S → S0,0 | ε

which also allows us to generate the empty word. �

4. Recall that a grammar in Chomsky normal form is one where all rules are of the form
A → BC or A → a, where capital and lower-case letters represent variables and
terminals respectively. Let G be a grammar in Chomsky normal form with |V | = k
variables, and let L be the language generated by G. Show that if L contains a word
of length greater than 2k−1, then L is infinite.

Answer. Derivations of grammars in Chomsky normal form are binary trees, where
the internal nodes correspond to rules of the form A → BC and the leaves correspond
to rules of the form A → a. Since a binary tree of depth k has at most 2k−1 leaves
(counting both the root and the leaves toward the depth) any word of length greater
than 2k−1 must have a derivation tree of depth greater than k. That means that it
contains some path of length greater than k, and by the Pigeonhole Principle some
variable is repeated along that path. The argument of the pumping lemma then applies,
and we can generate an infinite number of words of the form uvixyiz. �

5. Show that the language
L = {aibjck | i 6= j ∨ j 6= k}

is context-free but not deterministic context-free.

Answer. To prove it is context-free, recall that context-free languages are closed under
union, and write L as

L = {aibjck | i 6= j} ∪ {aibjck | j 6= k}

Both of these languages are easily seen to be context-free; for the first one, for instance,
push when you read a and pop when you read b, and accept if the stack goes empty
before we’re done with the b’s, or if it is still nonempty when we read the first c.

2

However, if L were deterministic context-free then L would be also. But if L were
context-free, then

{anbncn} = L ∩ a∗b∗c∗

would be context-free since the CFLs are closed under intersection with regular lan-
guages. Since we know that {anbncn} is not context-free, this is a contradiction. Thus
L is a CFL but not a DCFL. �

6. Show that the complement of the set of palindromes, L = {w ∈ {a, b}∗ | w 6= wR},
is context-free. Since both L and L are context-free, does this mean that they are
deterministic context-free? Give a DPDA that recognizes L, or some intuition for why
one does not exist.

Answer. Here is a context-free grammar for L:

S → aSa | bSb | aSb | bSa | aTb | bTa

T → aTa | aTb | bTa | bTb | a | b | ε

We require S to emit at least one mismatched pair before it becomes a T , which then
emits more pairs until it leaves behind a single symbol or disappears.

However, just because L and L are both context-free doesn’t mean that they are deter-
ministic context-free (although the converse is true); it could be that they both require
non-deterministic PDAs. In fact, imagine a DPDA trying to recognize a palindrome.
At the center of the word, it needs to stop pushing and start popping; but without
some kind of marker, it has no way of knowing when it is halfway through. An NPDA,
on the other hand, can guess when to turn around. �

7. We saw in class that while {anbncn} is not context-free, it is the intersection of two
context-free languages. Consider a k-symbol alphabet {a1, . . . , ak}, and the language
Lk = {an

1a
n
2 · · · an

k}. What is the smallest number of context-free languages such that
Lk is equal to their intersection?

Answer. Two.

Lk = {an1
1 an2

2 · · · ank
k |ni = ni+1 for even i} ∩ {an1

1 an2
2 · · · ank

k |ni = ni+1 for odd i}

Both of these are CFLs since they are concatenations of k/2 or k/2 − 1 CFLs of the
form {anbn} with perhaps the regular languages a∗1 and a∗k. �

8. Show that the language

L = {ucv | u, v ∈ {a, b}∗, u 6= v}

is context-free. (Note that u and v are not required to have the same length, and c is
used as a marker.) Hint: first, design a grammar for

{ucv | u, v ∈ {a, b}∗, |u| = |v|, and u and v differ in their last symbol}

3

and then figure out how to extend u and v with arbitrary strings.

Answer. We have Σ = {a, b}, so Σi means any word of length i. Then rewrite L as

(ΣiaΣ∗ c ΣibΣ∗) ∪ (ΣibΣ∗ c ΣiaΣ∗)

This formula requires that ui+1 6= vi+1 for some i, and therefore u 6= v. We start by
generating

(Σia c Σib) ∪ (Σib c Σia) ,

in which u and v differ on their last symbol, with the grammar

S → Tb | Ua

T → aTa | aTb | bTa | bTb | ac

U → aUa | aUb | bUa | bUb | bc

Then we get L by allowing arbitrary words Σ∗ to the left of c and at the end of the
word. To do this, add the rules

c → ac | bc
S → Sa | Sb

which completes the grammar for L. �

9. Let L be the copy language,

L = {ww | w ∈ {a, b}∗} .

Show that its complement L is context-free. This is tricky, but the idea is similar to
the previous problem.

Answer. L is the union of the set of words of odd length (which is regular and therefore
context-free) with the language

L′ = {uv | |u| = |v| and u 6= v}

We can rewrite this as

L′ = (ΣiaΣj · ΣibΣj) ∪ (ΣibΣj · ΣiaΣj)

As in the previous problem, this ensures that ui+1 6= vi+1 and so u 6= v.

Now for the trick: since ΣjΣi = ΣiΣj, this is the same as

L′ = (ΣiaΣi · ΣjbΣj) ∪ (ΣibΣi · ΣjaΣj)

4

Now the Σis and Σjs no longer cross, and each of the languages in this union is the
concatenation of two context-free languages. Our grammar is then

S → TU | UT

T → aTa | aTb | bTa | bTb | a
U → aUa | aUb | bUa | bUb | b

Of course, this provides another example of a language which is a CFL but not a
DCFL. �

10. Consider the language

L = {w ∈ {a, b}∗ | #a(w) = #b(w)}

i.e., words with an equal number of as and bs.

(a) How many words N(`) are there of each length `?

Answer. If ` is odd, N(`) = 0; if ` is even, we just need to choose which `/2 of
the symbols are a’s, giving N(`) =

(
`

`/2

)
.

(b) What is its generating function g(z) =
∑

` N(`) z`? (Feel free to ask Mathematica
or Maple to sum the series.)

Answer. We get

∞∑
`=0,2,4,...

(
`

`/2

)
z` =

∞∑
n=0

(
2n

n

)
z2n =

1√
1− 4z2

(c) Recall the unambiguous grammar for the bracket language, S → (S)S | ε. In-
spired by this, we might hope that

S → aSbS | bSaS | ε

is an unambiguous grammar for L, but unfortunately it’s not. Explain why.

Answer. Because we can derive the word abab in two distinct ways: S → aSbS →
aSb[aSbS] → abab, and S → aSbS → a[bSaS]bS → abab (here [·] marks where
the rule is applied in the second step).

(d) Now construct an unambiguous grammar for L. Hint: what kind of paths —
tracking the depth of the stack, or tracking the imbalance between as and bs seen
so far — do words in L correspond to, and how can we unambiguously define
them as being made up of smaller paths?

Answer. If we define the height as the number of as so far minus the number of bs
— or, equivalently, the depth of the stack if there have been more as and minus
the depth if there have been more bs — the words in L correspond to paths which
begin and end at height zero.

5

One way to decompose these unambiguously is shown in the figure. Look at the
first place where the height crosses zero — i.e., the shortest initial subword which
is also in L. Consider this part of the path. It either consists of a path which
is nowhere negative, bracketed by a and b (the example shown in the figure) or
a path which is nowhere positive, bracketed by b and a. Let’s define variables A
and B for the nowhere-negative and nowhere-positive paths respectively. In both
cases the remainder of the path is another path which begins and ends at zero,
and thus which corresponds to another word in L; this is generated by another
copy of the start symbol S.

Paths which are nowhere negative are isomorphic to words in the bracket lan-
guage, where ‘(’ and ‘)’ correspond to a and b respectively. We can generate this
unambiguously with the grammar A → aAbA | ε. We generate nowhere-positive
paths by switching a and b.

All this gives the following set of rules:

S → aAbS | bBaS | ε
A → aAbA | ε
B → bBaB | ε

a b

A

S

Figure 1: An example of the decomposition. Here aabaabbbbaab = a(abaabb)b · baab.

(e) Use your unambiguous grammar from (d) to derive the generating function g(z)
and check that it gives the same answer as you gave in (b) above.

Answer. The rules of the grammar above imply that

g(z) = z2gA(z)g(z) + z2gB(z)g(z) + 1

gA(z) = z2gA(z)2 + 1

gB(z) = z2gB(z)2 + 1

where gA and gB are the generating functions for the languages generated by A
and B. Solving the quadratic equations for gA and gB, we get

gA(z) = gB(z) =
1−

√
1− 4z2

2z2

6

which is the generating function for the bracket language. Substituting this into
the above equation for g(z) we get

g(z) = z2 (gA(z) + gB(z)) g(z) + 1 =
(
1−

√
1− 4z2

)
g(z) + 1

and solving this linear equation for g gives

g(z) =
1√

1− 4z2
.

7

