
8/17/2017 15-412 Lecture 6

http://webcache.googleusercontent.com/search?q=cache:OT3e4S-FJGwJ:www.cs.cmu.edu/~gkesden/412-18/fall01/ln/lecture6.html+&cd=1&hl=en&ct… 3/6

 {
 while (state[j] == inside); /* is the other one inside? */

 state[i] = inside; /* get in and flip state */

 <<< critical section >>>

 state[i] = outside; /* revert state */

 <<< code outside critical section >>>
 }

This proposal has some nice features:

No blocking occurs unless the other process is inside of the critical section (progress criteria is
satisfied).
To the extent allowed by the scheduler, there is a guarantee that both processes will eventually
be able to enter the critical region.

But we still don't have a solution. To understand why this code is incorrect, we must remember two
things:

The currently running process can be pre-emempted at any time -- leaving the current activity
incomplete
Murphy's law will ensure that a context switch will occur at the most embarassing of all possible
times. If there is an occasion for a context-switch to break our code, Mr. Murphy will find it.

Atomicity is the property of being executed as a single unit. This algorithm assumes that the test of
(state[1] == inside) and the set of (state[0] = inside) are atomic. That is to say, this algorithm assumes
that nothing can come in-between those two operations.

That assumption is inaccurate. A race-condition exists between testing and setting state. P0 can be pre-
empted between the two operations, by P1. The result will be that P1 will test state[0], find it false, and
enter the critical section.

Consider the following trace:

1. P0 finds (state[1] == outside)
2. The scheduler forces a context-switch
3. P1 (finds state[0]==outside)
4. P1 sets (state[0] = inside)
5. P1 enters the critical section
6. The scheduler forces a context-switch
7. P0 sets (state[1] = inside)
8. P0 enters the critical section
9. Both P0 and P1 are now in the critical section

With both processes in the critical section, the mutual exclusion criteria has been violated.

Algorithm #3 (Incorrect)

Let's try again. This time, let's avoid the race-condition by expressing our intent first, and then
checking the other process's state:

8/17/2017 15-412 Lecture 6

http://webcache.googleusercontent.com/search?q=cache:OT3e4S-FJGwJ:www.cs.cmu.edu/~gkesden/412-18/fall01/ln/lecture6.html+&cd=1&hl=en&ct… 4/6

 /* i is this process; j is the other process */

 while (true)
 {
 state[i] = interested; /* declare interest */

 while (state[j] == interested); /* stay clear till safe */

 <<< critical section >>>

 state[i] = notinterested; /* we’re done */

 <<< code outside critical section >>>
 }

Okay. This does guarantee mutual exclusion, but not bounded wait. This approach allows a livelock. A
livelock is a special type of deadlock, where the affected processes are consuming (wasting) CPU
cycles by looping forever.

Consider the following trace:

1. P0 sets state[0] to interested
2. A context-switch occurs
3. P1 sets state[1] to interested
4. P1 loops in while
5. A context-switch occurs
6. P0 loops in while

Both P0 and P1 loop forever. This is the livelock.

Algorithm #4: Peterson's Algorithm (Correct)

This time, let's try using Algorithm #3, but taking turns to break ties:

 /* i is this process; j is the other process */

 while (true)
 {
 state[i] = interested; /* declare interest */
 turn = j; /* be nice to other guy */

 while (state[j] == interested && turn == j);

 <<< critical section >>>

 state[i] = notinterested; /* we’re done */

 <<< code outside critical section >>>
}

This code satisfies all three properties:

mutual exclusion
progress
bounded wait

