edited by
8,972 views

8 Answers

0 votes
0 votes
I think limit of n tends to infinity and answer seems to be 1.

Is it  ?
0 votes
0 votes
$y=\lim_{n->\infty}(1-\frac{1}{n})^{2n}$

$\log y=\lim_{n->\infty}2n*\log(1-\frac{1}{n})$

let , $z=-\frac{1}{n}$

as $n->\infty$  , $z->0$

$\log y=(-2)\lim_{z->0}\frac{\log (1+z)}{z}$

as we know $\lim_{z->0}\frac{\log (1+z)}{z}=1$

$\log y=(-2)*1$

$y=e^{-2}$

correct answer (B)
0 votes
0 votes

Form :- (→1)$^{→\infty}$ => indeterminate form.

$\lim_{n→\infty}$ (1 – 1/n)$^{2n}$
= $\lim_{n→\infty}$ e$^{(ln(1 – 1/n)^{2n})}$
= $\lim_{n→\infty}$ e$^{(2n)ln(1 – 1/n)}$   (let’s find $\lim_{n→\infty}$ n ln(1 – 1/n))

$\lim_{n→\infty}$ n ln(1 – 1/n)  (→$\infty$ x →0  => indeterminate form)
= $\lim_{n→\infty}$ [ln(1 – 1/n)] / (1/n)  (→$\infty$/→$\infty$  => indeterminate form. Apply L’hopital’s rule)
= $\lim_{n→\infty}$ [1/n$^{2}$] / (1 – 1/n)(-1/n$^{2}$) 
= $\lim_{n→\infty}$ (-1)/(1 – 1/n)
= -1

So, $\lim_{n→\infty}$ e$^{(2n)ln(1 – 1/n)}$ = $\lim_{n→\infty}$ e$^{(2)[nln(1 – 1/n)]}$ = $\lim_{n→\infty}$ e$^{(2)(-1)}$ = e$^{-2}$

Another approach :- Use formula : $\lim_{n→a}$ f(n)$^{g(n)}$ where when n→a, then f(n)→1 and g(n)→$\infty$ ((→1)$^{→\infty}$ => indeterminate form)

$\lim_{n→a}$ f(n)$^{g(n)}$ = $\lim_{n→a}$ e$^{g(n)(f(n)–1)}$

$\lim_{n→\infty}$ (1 – 1/n)$^{2n}$ = $\lim_{n→\infty}$ e$^{2n(1 – (1/n) –1)}$ = $\lim_{n→\infty}$ e$^{2n(-1/n)}$ = $\lim_{n→\infty}$ e$^{-2}$ = e$^{-2}$

Answer:

Related questions

15 votes
15 votes
6 answers
1
makhdoom ghaya asked Oct 2, 2015
3,372 views
The limit of $\dfrac{10^{n}}{n!}$ as $n \to \infty$ is.$0$$1$$e$$10$$\infty$
22 votes
22 votes
4 answers
2
Arjun asked Feb 14, 2017
6,088 views
The value of $\displaystyle \lim_{x\rightarrow 1} \frac{x^{7}-2x^{5}+1}{x^{3}-3x^{2}+2}$is $0$is $-1$is $1$does not exist
32 votes
32 votes
6 answers
3
go_editor asked Feb 14, 2015
13,232 views
The value of $\displaystyle \lim_{x \rightarrow \infty} (1+x^2)^{e^{-x}}$ is$0$$\frac{1}{2}$$1$$\infty$
26 votes
26 votes
6 answers
4
makhdoom ghaya asked Feb 11, 2015
8,246 views
$\displaystyle \lim_{x\rightarrow \infty } x^{ \tfrac{1}{x}}$ is$\infty $$0$$1$Not defined