The Gateway to Computer Science Excellence
First time here? Checkout the FAQ!
+10 votes

Consider the following matrix $$A = \left[\begin{array}{cc}2 & 3\\x & y \end{array}\right]$$ If the eigenvalues of A are $4$ and $8$, then

  1. $x = 4$, $y = 10$
  2. $x = 5$, $y = 8$
  3. $x = 3$, $y = 9$
  4. $x = -4$, $y =10$
in Linear Algebra by Boss (16.1k points)
edited by | 1.3k views

3 Answers

+19 votes
Best answer
Sum of eigenvalues is equal to trace (sum of diagonal elements) and product of eighen values is equal to the determinant of matrix

So, $2+y=8+4$ and  $2y-3x = 32$

Solving this we get $y = 10, x =-4.$

Option $D$ is answer.
by Boss (30.9k points)
edited by
+4 votes
Solve the equation 3x 2y=8 and x 2y=16 which i get x= -4 ,y = 10
by Boss (14.3k points)
–2 votes
using one simple property...

The sum of eigen values is equal to the sum of the diagonal elements.

Given that the eigen values are 4 and 8, we have,

8+4 = y + 2

y = 10.

Now out of A and D, I don't find any difference in the options.
by Boss (19.9k points)

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
49,845 questions
54,764 answers
80,274 users