Consider a sequence $F_{00}$ defined as:
$F_{00} (0) = 1, \: F_{00}(1)=1$
$F_{00}(n) = \frac{10*F_{00}(n-1)+100}{F_{00}(n-2)} \text{ for } n \geq 2$
Then what shall be the set of values of the sequence $F_{00}$?
- (1, 110, 1200)
- (1, 110, 600, 1200)
- (1, 2, 55, 110, 600, 1200)
- (1, 55, 110, 600, 1200)