4.5k views

Let $T$ be a binary search tree with $15$ nodes. The minimum and maximum possible heights of $T$ are:

Note: The height of a tree with a single node is $0$.

1. $4$ and $15$ respectively.
2. $3$ and $14$ respectively.
3. $4$ and $14$ respectively.
4. $3$ and $15$ respectively.
in DS
edited | 4.5k views

The maximum height of a binary search tree will be when the tree is fully skewed Maximum height  $= n - 1 = 15 – 1 = 14$

The minimum height of a binary search tree will be when the tree is full. Minimum height  $= \log_2( n + 1 ) – 1 = \log_2( 15 + 1 ) – 1 = \log_2( 16 ) – 1 = 4 - 1 = 3$

Correct Answer: $B$

by Loyal
edited

Min height of a binary tree is given by $\log _{2}(n+1)-1=4-1=3$

max height of the binary tree is $n - 1$ (skewed binary tree$= 15 - 1 =14$

Ans:B) $3,14$

by Loyal
edited by
B) 3,14 .

Worst case : skewed
by Active please do correct me if I m wrong

by Active
Height will be maximum when the BINARY SEARCH TREE is completely skewed

example for an ASCENDING order sequence of numbers say {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} hence maximum height will be

14

height will be minimum when tree is maximally packed that is every level is filled completely before moing to next level...

in that case

level 1->1 node

level 2-> 2 node

level 3-> 4 node

level 4-> 8 nodes

so in 4 level total nodes are 1+2+4+8=15

so min height is 3

option (B)
by Active
it is 3 and 14 respectively
the height of the tree from simple drawing will be 3 and 14 respectively