edited by
15,360 views
46 votes
46 votes
If the characteristic polynomial of a  $3 \times 3$  matrix $M$ over $\mathbb{R}$ (the set of real numbers) is $\lambda^3 – 4 \lambda^2 + a \lambda +30, \quad a \in \mathbb{R}$, and one eigenvalue of $M$ is $2,$ then the largest among the absolute values of the eigenvalues of $M$ is _______
edited by

8 Answers

Best answer
70 votes
70 votes
Given that $ \lambda = 2$ is an eigen value. So, it must satisfy characterstic equation.

$2^3 - 4*2^2 + 2a + 30 = 0 \Rightarrow \color{green}{a = -11}$

Characterstic eq : $\lambda^3 -4\lambda^2 - 11\lambda + 30$

$\Rightarrow (\lambda - 2)(\lambda - 5)(\lambda + 3) = 0$

$\lambda_1 = 2, \lambda_2 = 5$ and $\lambda_3 = -3$

Max Eigen Value $ = 5$
selected by
48 votes
48 votes

$a\lambda^3 – b \lambda^2 + c \lambda +d = \lambda^3 – 4 \lambda^2 + x \lambda +30$
(Using $x$ in place of $a$ on question to preserve the convention)

$\implies a = 1, b = -4, c = x, d = 30$

Sum of eigen values  $=   (-b/a)=   4.$

So,  $x_1  +  x_2  +  x_3    =   4$

Given $x_1 = 2$
So, $    x_2  +  x_3      =  4  -  2   =  2 \quad \to (1)$

Product of eigen values   $=  (-d/a) = -30.$

So,  $x_1 . x_2 . x_3       =   -30$
$\implies x_2 . x_3         =  -15 \quad \to (2)$

Solving $(1)$ and $(2)$, we get 

$x_2  =  -3   ,   x_3  =  5$

Hence, the absolute value of largest of 3 eigen values  =  5.

edited by
18 votes
18 votes
$\lambda^3-4\lambda^2+a\lambda+30$

Given $\lambda-2=0$

$\therefore a=-11$

Complete Equation : $\lambda^3-4\lambda^2-11\lambda+30$

To find other $2$ roots just divide the equation with $\lambda-2$ which is root itself :

       
$\lambda -2\Large)$ $\lambda^3-4\lambda^2-11\lambda+30\Large ($$\lambda^2-2\lambda-15$

           $-\lambda^3+2\lambda^2$

           --------------------

                    $-2\lambda^2-11\lambda$

                       $2\lambda^2-4\lambda$

                     --------------------

                                $-15\lambda+30$

                                   $15\lambda-30$

$\therefore $ $Eq^n=$ $(\lambda-2)( \lambda+3) (\lambda-5)$

Hence : Max $\{2,-3,5\}=\color{Red}5$
5 votes
5 votes
Given that λ=2λ=2 is an eigen value. So, it must satisfy characterstic equation.

23−4∗22+2a+30=0⇒a=−1123−4∗22+2a+30=0⇒a=−11

Characterstic eq : λ3−4λ2−11λ+30λ3−4λ2−11λ+30

⇒(λ−2)(λ−5)(λ+3)=0⇒(λ−2)(λ−5)(λ+3)=0

λ1=2,λ2=5λ1=2,λ2=5 and λ3=−3λ3=−3

Max Eigen Value =5
Answer:

Related questions

31 votes
31 votes
2 answers
1
Arjun asked Feb 14, 2017
11,735 views
Let $P = \begin{bmatrix}1 & 1 & -1 \\2 & -3 & 4 \\3 & -2 & 3\end{bmatrix}$ and $Q = \begin{bmatrix}-1 & -2 &-1 \\6 & 12 & 6 \\5 & 10 & 5\end{bmatrix}$ be two matrices.Th...
17 votes
17 votes
4 answers
2
Arjun asked Feb 18, 2021
15,315 views
Consider the following matrix.$$\begin{pmatrix} 0 & 1 & 1 & 1\\ 1& 0& 1 & 1\\ 1& 1 & 0 & 1 \\1 & 1 & 1 & 0 \end{pmatrix}$$The largest eigenvalue of the above matrix is __...
26 votes
26 votes
4 answers
3
Arjun asked Feb 7, 2019
19,285 views
Consider the following matrix:$R = \begin{bmatrix} 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \\ 1 & 5 & 25 & 125 \end{bmatrix}$The absolute value of the product ...
5 votes
5 votes
1 answer
4