Consider the set $S =\{ a , b , c , d\}.$ Consider the following $4$ partitions $π_1,π_2,π_3,π_4$ on
$S : π_1 =\{\overline{abcd}\},\quad π_2 =\{\overline{ab}, \overline{cd}\},$ $\quad π_3 = \{\overline{abc}, \overline{d}\},\quad π_4 =\{\bar{a}, \bar{b}, \bar{c}, \bar{d}\}$.
Let $\prec$ be the partial order on the set of partitions $S' = \{π_1,π_2,π_3,π_4\}$ defined as follows: $π_i \prec π_j$ if and only if $π_i$ refines $π_j$. The poset diagram for $(S',\prec)$ is: