retagged by
386 views

1 Answer

Best answer
1 votes
1 votes
$\lim_{x\to 0}\left( \frac{1}{x^2} - \frac{1}{\sin^2 x}\right ) = \lim_{x\to 0}\left( \frac{\sin^2 x - x^2}{x^2 \sin^2 x}\right )$

Now when x --> 0, then $x^2 \approx 0$, and $\sin^2 x \approx 0$, so $x^2\sin^2 x \approx x^4$. So

$\lim_{x\to 0}\left( \frac{\sin^2 x - x^2}{x^2 \sin^2 x}\right ) = \lim_{x\to 0}\left( \frac{\sin^2 x - x^2}{x^4}\right )$

Now applying L'Hospital's rule, we get

$\lim_{x\to 0}\left( \frac{\sin^2 x - x^2}{x^4}\right ) = \lim_{x\to 0}\left( \frac{2\sin x\cos x - 2x}{4x^3}\right ) = \lim_{x\to 0}\left( \frac{\sin 2x - 2x}{4x^3}\right )$

Again applying L'Hospital's rule, we get

$\lim_{x\to 0}\left( \frac{\sin 2x - 2x}{4x^3}\right ) = \lim_{x\to 0}\left( \frac{2\cos 2x - 2}{12x^2}\right ) = \lim_{x\to 0}-2\left( \frac{1-\cos 2x}{12x^2}\right )$

$= \lim_{x\to 0}-2\left( \frac{2\sin^2 x}{12x^2}\right ) = \frac{-1}{3}$

Last equality comes by applying limit.
selected by

Related questions

1 votes
1 votes
3 answers
1
Salman asked Aug 1, 2015
922 views
$$\lim_{x \to 0} \frac{\cos(x)-\log(1+x)-1+x}{\sin^2x} = ? $$Please explain the steps also
1 votes
1 votes
1 answer
2
saket nandan asked Jul 10, 2015
415 views
$\lim_{x\rightarrow 0}\frac{ \sin x^{\circ}}{x}$
0 votes
0 votes
2 answers
3
saket nandan asked Jul 10, 2015
802 views
$\lim_{\theta \rightarrow 0} \frac{ 1-\cos \theta }{ \theta \sin\theta }$
1 votes
1 votes
2 answers
4
saket nandan asked Jul 10, 2015
516 views
$\lim_{x\rightarrow 0} \frac{e^{x}-e^{\sin x}} {x-\sin x}$