Answer: A

The Gateway to Computer Science Excellence

+20 votes

`An n-bit two's-complement numeral system can represent every integer in the range −(2`

^{n − 1}) to +(2^{n − 1} − 1).

`while ones' complement can only represent integers in the range −(2`

^{n − 1} − 1) to +(2^{n − 1} − 1).

`A is answer`

+2 votes

Total number of distinct numbers that can be represented using $n$ bits $=2^n.$

In case of unsigned numbers these corresponds to numbers from $0$ to $2^n -1.$

In case of signed numbers in $1's$ complement or sign magnitude representation, these corresponds to numbers from $-(2^{n-1}-1)$ to $2^{n-1}-1$ with $2$ separate representations for $0.$

In case of signed numbers in $2's$ complement representation, these corresponds to numbers from $-2^{n-1}$ to $2^{n-1}-1$ with a single representation for $0.$

In case of unsigned numbers these corresponds to numbers from $0$ to $2^n -1.$

In case of signed numbers in $1's$ complement or sign magnitude representation, these corresponds to numbers from $-(2^{n-1}-1)$ to $2^{n-1}-1$ with $2$ separate representations for $0.$

In case of signed numbers in $2's$ complement representation, these corresponds to numbers from $-2^{n-1}$ to $2^{n-1}-1$ with a single representation for $0.$

- All categories
- General Aptitude 1.9k
- Engineering Mathematics 7.5k
- Digital Logic 2.9k
- Programming and DS 4.9k
- Algorithms 4.4k
- Theory of Computation 6.2k
- Compiler Design 2.1k
- Databases 4.1k
- CO and Architecture 3.4k
- Computer Networks 4.2k
- Non GATE 1.4k
- Others 1.4k
- Admissions 595
- Exam Queries 573
- Tier 1 Placement Questions 23
- Job Queries 72
- Projects 18

50,741 questions

57,251 answers

198,045 comments

104,670 users