First time here? Checkout the FAQ!
+3 votes

The number of binary strings of $n$ zeros and $k$ ones in which no two ones are adjacent is

  1. $^{n-1}C_k$

  2. $^nC_k$

  3. $^nC_{k+1}$

  4. None of the above


asked in Combinatory by Veteran (66.1k points) 1148 2196 2522
retagged by | 662 views

2 Answers

+15 votes
Best answer

answer - D

first place n zeroes side by side _ 0 _ 0 _ 0 ... 0 _

k 1's can be placed in any of the (n+1) available gaps hence number of ways  = n+1Ck

answered by Boss (9.3k points) 12 55 123
selected by

Shouldn't the complete answer be n+1Ck  multiplied by k! multiplied by (k-1)!.taking into consideration the arrangements of 0 s

Arrangement of n zeroes can be in  Ways as


Keeping n+1 places for ones so that no two ones can be placed together and ther are k ones to be placed.


all 0s and 1s are identical so no need to permutate them

answer is D
0 votes

Total no of ways = C(n+1 ,k)

The correct answer is (D) None of the above

answered by Boss (8.8k points) 3 8 12

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
Top Users Oct 2017
  1. Arjun

    23210 Points

  2. Bikram

    17018 Points

  3. Habibkhan

    6652 Points

  4. srestha

    5864 Points

  5. Debashish Deka

    5430 Points

  6. jothee

    4908 Points

  7. Sachin Mittal 1

    4762 Points

  8. joshi_nitish

    4274 Points

  9. sushmita

    3954 Points

  10. Silpa

    3698 Points

Recent Badges

Regular Juhi Sehgal
Popular Question vineet.ildm
Nice Comment Arjun
100 Club vipul verma
Notable Question jothee
Popular Question jothee
Nice Question shivangi5
Regular rinks5
Notable Question shipra tressa
Regular sasi
27,247 questions
35,056 answers
33,183 users