recategorized by
614 views

1 Answer

Best answer
1 votes
1 votes
Let's derive the formula then we will compute the answer,

assuming mean = $m$,

$\Rightarrow \Large E\left ( X^2 \right ) = \sum_{0}^{\infty} x^2 P (x,m)$

$\Rightarrow \Large E\left ( X^2 \right ) = \sum_{0}^{\infty}( x(x-1) + x)  \  P (x,m)$

$\Rightarrow \Large E\left ( X^2 \right ) = \sum_{0}^{\infty} x(x-1) P (x,m) + \sum_{0}^{\infty} x P (x,m)$

$\Rightarrow \Large E\left ( X^2 \right ) = \sum_{0}^{\infty} x(x-1) P (x,m) + m$                                                      $∵ \ \sum_{0}^{\infty} x P (x,m) = m$

 

$\Rightarrow \Large E\left ( X^2 \right ) = \sum_{0}^{\infty} x(x-1) \frac{e^{-m} m ^x}{x!} + m$

$\Rightarrow \Large E\left ( X^2 \right ) = e^{-m}\sum_{0}^{\infty} x(x-1) \frac{ m ^x}{x!} + m$

$\Rightarrow \Large E\left ( X^2 \right ) = m^2 e^{-m} \left [\sum_{2}^{\infty} \frac{ m ^{x-2}}{\left (x-2 \right )!} \right ] + m$

$\Rightarrow \Large E\left ( X^2 \right ) = m^2 e^{-m} e^{m} + m$                                                                                              $∵\left [\sum_{2}^{\infty} \frac{ m ^{x-2}}{\left (x-2 \right )!} \right ] = e ^m$

$\Rightarrow \Large E\left ( X^2 \right ) = m^2 + m$  .

Now given,

$\large E\left ( X^2 \right ) = 2$

$\large 2 = m^2 + m$

$\large m = 1$
selected by

Related questions

3 votes
3 votes
0 answers
1
Mk Utkarsh asked Aug 31, 2018
910 views
If x has a modified Poisson distribution$P_k = P_r(x = k) =$$\Large \frac{ ( e^m - 1 )^{-1} m^k}{k!}$, $(k = 1,2,3.....)$, then expected value of x is .......
1 votes
1 votes
1 answer
3
Shubhanshu asked Aug 1, 2017
745 views
In this question if we do simply probability calculation then it is 8/20 40%but when I am appling poisson distribution then it is 40.4%.why we are getting two different a...
1 votes
1 votes
1 answer
4
LRU asked Nov 25, 2022
1,420 views
Let X have a Poisson distribution with parameter λ = 1. What is the probability that X ≥ 2 given that X ≤ 4?