# GATE2013-22

3.9k views

Which one of the following functions is continuous at $x = 3?$

1. $f(x) = \begin{cases} 2,&\text{if$x = 3$} \\ x-1& \text{if$x > 3$}\\ \frac{x+3}{3}&\text{if$x < 3$} \end{cases}$
2. $f(x) = \begin{cases} 4,&\text{if$x = 3$} \\ 8-x& \text{if$x \neq 3$} \end{cases}$
3. $f(x) = \begin{cases} x+3,&\text{if$x \leq 3$} \\ x-4& \text{if$x > 3$} \end{cases}$
4. $f(x) = \begin{cases} \frac{1}{x^3-27}&\text{if$x \neq 3$} \end{cases}$
in Calculus
1
is it's ans be a?
3
$Properties\ of\ Discontinuity\\ A\ function\ f(x)\ will\ be\ discontinuous\ at\ x=a\ here\ x=3, if\ any\ one\ below\ hold\\ \\ 1. \lim_{x->a^{-}}f(x) \neq \lim_{x->a^{+}}f(x)\ (LHL\neq RHL)\\ 2. \lim_{x->a^{-}}f(x)\doteq \lim_{x->a^{+}}f(x)\neq f(a)\\ 3. f(a)\ is\ not\ defined\\ 4. At\ least\ one\ of\ the\ limit\ not\ exists$

For continuity, Left hand limit must be equal to right hand limit. For continuity at $x = 3$,

the value of $f(x)$ just above and just below $3$ must be the same.

A. $f(3) = 2. f(3+) = x - 1 = 2. f(3-) =\frac{(x+3)}{3} =\frac{6}{3} = 2.\text{ Hence continuous.}$

B. $f(3) = 4. f(3+) = f(3-) = 8 - 3 = 5. \text{ So, not continuous.}$

C. $f(3) = f(3-) = x + 3 = 6. f(3+) = x - 4 = -1.\text{ So, not continuous.}$

D. $f(3)\text{ is not existing. So, not continuous.}$
Correct Answer: $A$

edited
0
@Arjun Sir, why D is not existing? plzz explain ...am little bit poor in Maths so plzzz
2
at x=3 D is approaching infinity and hence function is not defined at x=3. For continuity LHL=RHL=value of the function. Hence not continuous.
1
In option B, Limit exists since $\lim_{x \to 3^{-}}{f(x)} = \lim_{x \to 3^{+}}{f(x)}$, but $\lim_{x \to 3}{f(x)}\neq f(3)$
1

yes option D is a discontinuous  graph

So this f(x) is continuous at x=3

1 vote
option A is true because LHL = RHL

LHL=$\lim_{x->3}(x+x)/3=(3+3)/3=2$

RHL=$\lim_{x->3}(x-1)=(3-1)=2$
0
LHL=limx->3-(x+3)/3 not (x+x)/3.

## Related questions

1
2.2k views
Let $f$ be a function defined by $f(x) = \begin{cases} x^2 &\text{ for }x \leq 1\\ ax^2+bx+c &\text{ for } 1 < x \leq 2 \\ x+d &\text{ for } x>2 \end{cases}$ Find the values for the constants $a$, $b$, $c$ and $d$ so that $f$ is continuous and differentiable everywhere on the real line.
A function $f(x)$ is continuous in the interval $[0,2]$. It is known that $f(0) = f(2) = -1$ and $f(1) = 1$. Which one of the following statements must be true? There exists a $y$ in the interval $(0,1)$ such that $f(y) = f(y+1)$ For every $y$ ... maximum value of the function in the interval $(0,2)$ is $1$ There exists a $y$ in the interval $(0,1)$ such that $f(y)$ = $-f(2-y)$
The function $f\left ( x \right )=\dfrac{x^{2}-1}{x-1}$ at $x=1$ is : Continuous and differentiable Continuous but not differentiable Differentiable but not continuous Neither continuous nor differentiable
If $f(x) = \sin \bigg( \dfrac{1}{x^2+1} \bigg),$ then $f(x)$ is continuous at $x=0$, but not differentiable at $x=0$ $f(x)$ is differentiable at $x=0$, and $f’(0) \neq 0$ $f(x)$ is differentiable at $x=0$, and $f’(0) = 0$ None of the above