The Gateway to Computer Science Excellence
First time here? Checkout the FAQ!
x
+5 votes
1.2k views

What will be the maximum sum of $44, 42, 40, \dots$ ?

  1. $502$
  2. $504$
  3. $506$
  4. $500$
asked in Numerical Ability by Veteran (359k points)
edited by | 1.2k views
+1
For maximum sum we have to go from 44 to 0 i.e total 22 element

apply formula sum of 'n' even number  = n(n+1) = 22*23 = 506
0
Simply use (n/2)(a+d) Here a =0, d = 2 and n = 23.

4 Answers

+7 votes
Best answer

This is in AP.

Maximum sum means we do not need to consider negative numbers and can stop at $0.$

First find number of terms using the formula $\large a{_n} = a + (n-1)d$
Here,
$a = 44,$
$d = 42-44 = -2,$
$a{_n} = 0.$

Therefore, $0 = 44 + (n-1)(-2)$
$\Rightarrow n = 23.$

Now, sum of n terms of AP is given by: $S{_n} =\dfrac{n}{2}[a+a{_n}] =\dfrac{23}{2}[44+0] = 506.$
Option C is correct!

answered by Loyal (9.4k points)
edited by
+5 votes

it is an AP series sum till nth term formula =n/2[2a+(n-1)d] where a is first term,d is difference,n is number of terms.in this case n=22;a=2;d=2 now find out the sum whis results to 506

answered by Boss (14.3k points)
+5 votes
Sequence is

2+4+6+... + 42+ 44.

Then we can convert it into AP

2(1+2+3+... 21+22)=> Which is

2( (22*23)/2) (Using Sum of First n no , n * n+1 / 2 => 2(11*23) => C 506.
answered by Boss (42.9k points)
+1 vote
It is decreasing sequence(AP) with d=-2 For max sum all terms should be positive so lets find first negative term a+(n-1)d 44+(n-1)*-2
answered by Boss (31.7k points)


Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true

40,870 questions
47,531 answers
146,023 comments
62,296 users