The Gateway to Computer Science Excellence
First time here? Checkout the FAQ!
x
+13 votes
1.2k views

Find the sum of the expression

$\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+............+\frac{1}{\sqrt{80}+\sqrt{81}}$

  1. $7$
  2. $8$
  3. $9$
  4. $10$
asked in Numerical Ability by Veteran (369k points)
edited by | 1.2k views

1 Answer

+27 votes
Best answer
when you such overlapping expressions just rationalise it and add in most of the case you will be left with lesser number of terms ..in this case i am left with $\sqrt{81}-\sqrt{1}=8.$

 

 

$\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+..........+\dfrac{1}{\sqrt{80}+\sqrt{81}}$

 

$=\dfrac{1}{\sqrt{1}+\sqrt{2}}\times\left(\dfrac{\sqrt{1}-\sqrt{2}}{\sqrt{1}-\sqrt{2}} \right )+\dfrac{1}{\sqrt{2}+\sqrt{3}}\times\left(\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}} \right )+\dfrac{1}{\sqrt{3}+\sqrt{4}}\times\left(\dfrac{\sqrt{3}-\sqrt{4}}{\sqrt{3}-\sqrt{4}} \right )+.........+\dfrac{1}{\sqrt{80}+\sqrt{81}}\times\left(\dfrac{\sqrt{80}-\sqrt{81}}{\sqrt{80}-\sqrt{81}} \right )$

 

$=\dfrac{\sqrt{1}-\sqrt{2}}{(\sqrt{1})^{2}-(\sqrt{2})^{2}}+\dfrac{\sqrt{2}-\sqrt{3}}{(\sqrt{2})^{2}-(\sqrt{3})^{2}}+\dfrac{\sqrt{3}-\sqrt{4}}{(\sqrt{3})^{2}-(\sqrt{4})^{2}}+..........+\dfrac{\sqrt{80}-\sqrt{81}}{(\sqrt{80})^{2}-(\sqrt{81})^{2}}$

 

$=-\left(\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3} +\sqrt{3}-\sqrt{4}+.........+\sqrt{80}-\sqrt{81}\right )$

$=\sqrt{81}-\sqrt{1}$

$= 8$
answered by Boss (14.4k points)
edited by
0

Simplest approach

Simplest Approach!

Answer:

Related questions



Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true

44,301 questions
49,794 answers
164,402 comments
65,857 users