$17^8\; mod \; 47 = 289^4\; mod\; 47 = (6*47 + 7)^4\;mod\;47 = 7^4\;mod\;47 $

$ 7^4 = 2401$

$\color{red}{2401\;mod\;47 = 4}$

$ 7^4 = 2401$

$\color{red}{2401\;mod\;47 = 4}$

The Gateway to Computer Science Excellence

First time here? Checkout the FAQ!

x

+3 votes

+3 votes

Best answer

We can calculate this value using property of exponentiation in modular arithmetic

**$If \ a \equiv b(modN), then\ a^{k} \equiv b^{k}(modN) \ for \ any \ positive \ integer$ k**

$17^{8}(mod47) \\ \equiv (17^{2})^{4}(mod47) \\ \equiv 7^{4}(mod)47 \ \because 289mod47=7 \\ \equiv (7^{2})^{2}(mod47) \\ \equiv 2^{2}(mod47) \ \because \ 49mod47=2 \\ \equiv 4(mod47) \\ \equiv 4$

- All categories
- General Aptitude 1.4k
- Engineering Mathematics 6k
- Digital Logic 2.3k
- Programming & DS 4.3k
- Algorithms 3.7k
- Theory of Computation 4.6k
- Compiler Design 1.7k
- Databases 3.4k
- CO & Architecture 2.9k
- Computer Networks 3.4k
- Non GATE 1.2k
- Others 1.3k
- Admissions 506
- Exam Queries 482
- Tier 1 Placement Questions 22
- Job Queries 64
- Projects 16

40,976 questions

47,609 answers

146,779 comments

62,342 users