for symmetric difference

F= {(q_{1},q_{2}) | (q_{1}∈F_{1})**and**(q_{2}does_not∈F_{2 }) **or** (q_{1}does_not∈F_{1})**and**(q_{2}∈F_{2}) }

The Gateway to Computer Science Excellence

0 votes

Suppose we did a cross product of two DFAs:

Let the two DFAs be M_{1} and M_{2} accepting regular languages L_{1} and L_{2}

M1 = (Q_{1}, Σ, δ_{1}, q_{0}^{1} , F_{1})

M2 = (Q_{2}, Σ, δ_{2}, q_{0}^{2} , F_{2})

We want to construct DFA M = (Q, Σ, δ, q0, F) that recognize

L_{1} ∪ L_{2} then final states set will be F = {(q_{1}, q_{2})|q_{1} ∈ F_{1} or q_{2} ∈ F_{2}}

L_{1} Θ L_{2} (Symmetric Difference) What will be the final states for this?

- All categories
- General Aptitude 1.9k
- Engineering Mathematics 7.4k
- Digital Logic 2.9k
- Programming and DS 4.9k
- Algorithms 4.4k
- Theory of Computation 6.2k
- Compiler Design 2.1k
- Databases 4.1k
- CO and Architecture 3.4k
- Computer Networks 4.1k
- Non GATE 1.4k
- Others 1.7k
- Admissions 595
- Exam Queries 576
- Tier 1 Placement Questions 23
- Job Queries 72
- Projects 17

50,666 questions

56,168 answers

193,841 comments

94,047 users