for symmetric difference

F= {(q_{1},q_{2}) | (q_{1}∈F_{1})**and**(q_{2}does_not∈F_{2 }) **or** (q_{1}does_not∈F_{1})**and**(q_{2}∈F_{2}) }

The Gateway to Computer Science Excellence

0 votes

Suppose we did a cross product of two DFAs:

Let the two DFAs be M_{1} and M_{2} accepting regular languages L_{1} and L_{2}

M1 = (Q_{1}, Σ, δ_{1}, q_{0}^{1} , F_{1})

M2 = (Q_{2}, Σ, δ_{2}, q_{0}^{2} , F_{2})

We want to construct DFA M = (Q, Σ, δ, q0, F) that recognize

L_{1} ∪ L_{2} then final states set will be F = {(q_{1}, q_{2})|q_{1} ∈ F_{1} or q_{2} ∈ F_{2}}

L_{1} Θ L_{2} (Symmetric Difference) What will be the final states for this?

52,315 questions

60,427 answers

201,753 comments

95,231 users