386 views
2 votes
2 votes
Somebody prove this identity :

$\frac{\binom{n-1}{0}}{1} + \frac{\binom{n-1}{1}}{2} + \frac{\binom{n-1}{2}}{3} + .... + \frac{\binom{n-1}{n-1}}{n} = \frac{2^{n}-1}{n}$

1 Answer

Best answer
6 votes
6 votes

One nice approach which I want to mention in this regard :

We know : 

(1 + x)n-1     =    n-1C0 . (1)   +    n-1C1 (1) . x + n-1C2 (1) . x2  ....................  + n-1Cn-1 . xn-1             --------(1)

 Now integrating both sides w.r.t. x , we have : 

             (1 + x)n-1+1 / (n-1+1)    =  [  n-1C0 . x  ]  +   [ n-1C1  . x2 / 2 ]  ...............   + [  n-1Cn-1 . x/ n ]  + C [ where C is constant of integration as it is an indefinite integral ]                                                                                      -----------(2)

To find the value of C , we substitute x  =  0 in the above equation so by that we obtain C = 1 / n ....

Now substituting x = 1 both sides we have :

             2n /  n                         =    n-1C0    +  ( n-1C1 / 2 )   +  ....................   +    n-1Cn-1 / n    +  C

                                               =    n-1C0    +  ( n-1C1 / 2 )   +  ....................   +    n-1Cn-1 / n    +  1/n

==>     (2n - 1) / n                     =    n-1C0    +  ( n-1C1 / 2 )   +  ....................   +    n-1Cn-1 / n

Hence the answer should be (2n - 1) / n .

selected by