search
Log In
1 vote
905 views

Let $P$ and $Q$ be two propositions $\neg (P \leftrightarrow Q)$ is equivalent to

  1. $P\leftrightarrow \neg Q$
  2. $\neg P\leftrightarrow Q$
  3. $\neg P \leftrightarrow \neg Q$
  4. $Q\rightarrow P$
in Mathematical Logic
recategorized by
905 views
0
Options 1 and 2 both are correct.
0
yes both are correct
0
Option 1) and 2) both are correct .

Right?
0
Yes, both 1st and 2nd are correct.
0
Why not option 1) ?
1

P↔Q =  P Exnor Q 

So ~ ( P Exnor Q) = ~  P Exnor Q =  P Exnor ~Q = P Exor Q

Yes both are true.

5 Answers

2 votes
 
Best answer
P Q $\sim p$ $\sim Q$ $Q \rightarrow P$ $\sim(P \leftrightarrow Q)$ $P \leftrightarrow \sim Q$
$\sim P \leftrightarrow Q$
$\sim P \leftrightarrow \sim Q$
0 0 1 1 1 0 0 0 1
0 1 1 0 0 1 1 1 0
1 0 0 1 1 1 1 1 0
1 1 0 0 1 0 0 0 1

Both option(1)and (2) is the correct choice.


selected by
0 votes
The answer will be both 1)P↔∼Q & 2)∼P↔Q
0 votes

....

0 votes
Option 1 is correct

Option 2 is also correct
0 votes

$\sim$(P $\rightarrow$ Q)

= $\sim$( (P $\rightarrow$ Q) ^ (Q $\rightarrow$ P) )

= $\sim$ ( ($\sim$P v Q) ^ ( $\sim$Q v P) )

= $\sim$($\sim$P v Q) v $\sim$($\sim$Q v P)

= (P ^ $\sim$Q) v (Q v $\sim$P) = P$\bigoplus$Q

Using distributive law. (a + bc) = (a + b).(b + c)

= ( (P ^ $\sim$Q) v Q) ^ ( (P ^ $\sim$Q) v $\sim$P)

= ( ( P v Q)^($\sim$Q v Q)) ^ ( ( $\sim$P v  P) ^ ($\sim$Q v $\sim$P) )

= ( ( P v Q) ^ ( $\sim$Q v $\sim$ P)

Now here we have two choices.

1. ($\sim$P $\rightarrow$ Q) ^ ( Q $\rightarrow$ $\sim$P) = $\sim$P $\leftrightarrow$ Q

2. ($\sim$Q $\rightarrow$ P) ^ (P $\rightarrow$ $\sim$ Q) = P $\leftrightarrow$ $\sim$Q.

So both 1 and 2 option is correct.

Related questions

0 votes
1 answer
1
1.2k views
Negation of the proposition ⱻ x H(x) is: 1) ⱻ x ¬H(x) 2) Ɐ x ¬H(x) 3) Ɐ x H(x) 4) ¬ x H(x)
asked Nov 9, 2017 in Mathematical Logic Devwritt 1.2k views
0 votes
1 answer
2
1.2k views
8. Let P and Q be two propositions, ¬ (P ↔ Q) is equivalent to : (1) P ↔ ¬ Q (2) ¬ P ↔ Q (3) ¬ P ↔ ¬ Q (4) Q → P
asked Feb 1, 2018 in Mathematical Logic kavikeve 1.2k views
1 vote
0 answers
3
1.5k views
Let P and Q be two propositions, ¬(P↔Q) is equivalent to: 1) P↔¬Q 2) ¬P↔Q 3) ¬P↔¬Q 4) Q↔P
asked Nov 9, 2017 in Mathematical Logic Devwritt 1.5k views
1 vote
5 answers
4
3.5k views
What is the normal order of activities in which traditional software testing is organized? Integration Testing System Testing Unit Testing Validation Testing Code: c), a), b), d) c), a), d), b) d), c), b), a) b), d), a), c)
asked Nov 9, 2017 in IS&Software Engineering Devwritt 3.5k views
...