The Gateway to Computer Science Excellence
+15 votes

The function represented by the Karnaugh map given below is

  1. $A.B$
  2. $AB+BC+CA$
  3. $\overline{B \oplus C}$
  4. $A.BC$
in Digital Logic by Veteran
edited by | 2.8k views
should the K-map have BC as 00, 01, 11, 10?
yes. It must be a typo.
it isn't typo it is tricky i would say . Just to confuse the people . if we rewrite it according to the standrard formula . asnwer is so simple as that . BUT min term m1 is 0 not 1 , this is a typo
what trick is that?? isnt it a typo?? If we consider normal kmap with 00,01,11,10 we get answer as C. now what trick are you talking about?
Hey I found out slight mistake in this question added, I checked original 1998 question , the minterm value at  '001' is '0' by clearing that mistake I solved further question..

    Here The k-map is not given in cyclic form/gray code form. so after converting it into cyclic code format we got two essential prime implicants ie B'C' and BC.
  SOP(Sum of Product)=B'C'+BC
                                        =(B xOR C) '
Answer : C
not clear....???
sir can uh please explain the meaning of typo in this question ??
I got

A' B' +B' C' +A' C + BC after solving the given c k-map is it correct or not can anyone clarify me ??
A\BC 00 01 11 10
0 1 1 1 0
1 1 0 1 0


plz correct if anything is wrong? 


meghna $m_1$ is $0$


Mk Utkarsh I tried it as given in question considering m1=1, if m1=0 then B(XNOR)C.

why m1 will 0? is there  mistake in question ?
I can't understand the question is right or wrong
Question is perfectly right but its not in the standard form which we are used to of it.

1 Answer

+19 votes
Best answer

The given K-map is not standard as after "01" we have "10" and two variables are changing for consecutive column. This means it is not safe to merge adjacent $1s.$ By converting the K-map to standard form we get

which gives

$BC + \bar B\bar C = B \text{ XNOR } C = B \odot C$

This can be represented as negation of $\text{XOR} = \overline{B \oplus C}$

Option C is correct.

by Boss
selected by
what about minterm formed by postion m0 and m1 ie A'B'
This is typo minterm m1 is 0 not 1
why can't we make a pair of 4??? if we have all the ones then we must have taken 8 pairs. why here is a problem with 4 ones?


  • Read the comments after the question
  • Closely obserb the given image and compare with the standard diagram used to represent K-Map.

This would solve your doubt


Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
52,217 questions
59,907 answers
118,146 users