Let $L$ be a regular language and $w$ be a string in $L$. If $w$ can be split into $x, y$ and $z$ such that $|xy| \leq$ number of states in the minimal DFA for $L$, and $|y| > 0$ then,

(A) $\forall i \in N, xy^iz \notin L$

(B) $\exists i \in N, xy^iz \in L$

(C) $\forall i \in N, xy^iz \in L$

(D) $\exists i \in N, xy^iz \notin L$