# Linear Homogeneous Equation (Allen 2017)

261 views

Consider a system of equations (λ – a)x + 2y +3z = 0, x +2(λ – b) y + 3z = 0, x + 2y + 3(λ – c) z = 0, which has a non-trivial solution.

Product of all values of λ for above system is

 (1) abc + a + b + c + 2 (2) abc + a + b + c – 2 (3) abc – a – b – c – 2 (4) abc – a – b – c + 2

Ans given is Option C.

Can anyone explain the complete solution?

$A=\begin{bmatrix} \lambda- a &2 &3 \\ 1& 2\lambda-2b &3 \\ 1&2 & 3\lambda-3c \end{bmatrix}$

$=\begin{bmatrix} -a+\lambda &2 &3 \\ 1&-2b+2\lambda &3 \\ 1&2 & -3c+3\lambda \end{bmatrix}$

We find the values of $\lambda$ which satisfy the characteristic equation of the matrix $A$, namely those values of $\lambda$ for which

$|A-\lambda I|=0$

$\begin{vmatrix} -a+\lambda &2 &3 \\ 1&-2b+2\lambda &3 \\ 1&2 & -3c+3\lambda \end{vmatrix}=0$

$\begin{vmatrix} -a+\lambda &2+0 &3+0 \\ 1+0&-2b+2\lambda &3+0 \\ 1+0&2+0 & -3c+3\lambda \end{vmatrix}=0$

$\begin{vmatrix} -a &2 &3 \\ 1&-2b &3 \\ 1&2 & -3c \end{vmatrix}+\begin{vmatrix} \lambda &0 &0 \\ 0& 2\lambda &0 \\ 0&0 & 3\lambda \end{vmatrix}=0$

$\begin{vmatrix} -a &2 &3 \\ 1&-2b &3 \\ 1&2 & -3c \end{vmatrix}+6\lambda ^{3}\begin{vmatrix} 1 &0 &0 \\ 0& 1 &0 \\ 0&0 & 1 \end{vmatrix}=0$

$-6abc+6a+6b+6c+12+6\lambda ^{3}=0$

$6\lambda ^{3}=6abc-6a-6b-6c-12$

$\lambda ^{3}=abc-a-b-c-2$

Hence,Option$(3)abc-a-b-c-2$.
0

Thank you @LeenSharma Veteran.

You made it look so simple.

M=$\begin{pmatrix} -a+\lambda &2 &3 \\ 1&-2b+2\lambda &3 \\ 1&2 & -3c+3\lambda \end{pmatrix}$=0

can be written as:-

M=$\begin{pmatrix} -a &2 &3 \\ 1&-2b &3 \\ 1&2 & -3c \end{pmatrix}$ / -6   -  $\lambda$/-6 $\begin{pmatrix} -1 &0 &0 \\ 0&-2 &0 \\ 0&0 & -3 \end{pmatrix}$=0

|M'-$\lambda$I|=0

:represent  $\lambda$ is eigen values of given matrix.....and product of all the values of is equal to the determinent of matrix M' /-6

M'=$\begin{pmatrix} -a &2 &3 \\ 1&-2b &3 \\ 1&2 & -3c \end{pmatrix}$   /-6

Det(M')devided by -6=option C

edited by
0

How did you split the matrix into two matrices?

@hs_yadav can you explain it further, pl.

0

If system has a non-trivial solution then determinant of matrix should be Zero.

## Related questions

1 vote
1
321 views
For what values of $\lambda$ the system of equations will have $2$ linear independent solutions - $x + y + z = 0$ $(\lambda + 1) y + (\lambda + 1) z = 0$ ($\lambda^{2}- 1) z = 0$ Now the problem i'm facing is if there is $2$ Linear ... rank of matrix will be $1$. Can anyone please explain in simple why the rank of matrix should be $1$ if we need $2$ Linear Independent solution. Thankyou.
Test the consistency of the following system of equations and solve if possible $3x + 3y +2z = 1$ $x + 2y = 4$ $10y + 3z = -2$ $2x - 3y -z = 5$