edited by
3,270 views
29 votes
29 votes

The coefficient of $x^{3}$ in the expansion of $(1 + x)^{3} (2 + x^{2})^{10}$ is.

  1. $2^{14}$
  2. $31$
  3. $\left ( \frac{3}{3} \right ) + \left ( \frac{10}{1} \right )$
  4. $\left ( \frac{3}{3} \right ) + 2\left ( \frac{10}{1} \right )$
  5. $\left ( \frac{3}{3} \right ) \left ( \frac{10}{1} \right ) 2^{9}$
edited by

7 Answers

3 votes
3 votes

Just two cases Possible here :

1) Extract x from (1+X)3 and x2 from (2+x2)10 to finally get x3.  --> 3C10C* 29

2) Extract x3 from (1+X)3 and x0 from (2+x2)10 to finally get x3.  --> 3C10C* 210

So coefficient of x3 is --> case 1 + case 2 --> 30*29 + 210 --> 32 * 2--> 214.

1 votes
1 votes
Using Binomial Theorem:
$(a+b)^{n} = \sum_{k=0}^{n}\binom{n}{k} (a)^{n-k}.(b)^{k}$

$(1+x)^{3}.(2+x^{2})^{10} = \sum_{k=0}^{3}\binom{3}{k}(1)^{3-k}.(x)^{k}$  $\ast$ $\sum_{r=0}^{10}\binom{10}{r}(2)^{10-r}.(x^{2})^{r}$

$(1+x)^{3}.(2+x^{2})^{10} = \sum_{k=0}^{3}\binom{3}{k}(x)^{k}$  $\ast$ $\sum_{r=0}^{10}\binom{10}{r}(2)^{10-r}.(x^{2})^{r}$

Case$(1):$ Put $k=3$ and $r=0$,we get $x^{3}$

Coefficient of $x^{3}:\binom{3}{3}\ast\binom{10}{0}.(2)^{10} = 2^{10}$

Case$(2):$ Put $k=1$ and $r=1$,we get $x^{3}$

Coefficient of $x^{3}:\binom{3}{1}\ast\binom{10}{1}.(2)^{9} = 3\cdot10\cdot2^{9} = 30\cdot2^{9}$

Finally Coefficient of $x^{3}: 2^{10} + 30\cdot2^{9}$

                                    $\Rightarrow 2^{9}(2^{1} + 30)$

                                   $\Rightarrow 2^{9}(2 + 30)$

                                  $\Rightarrow 2^{9}(32)$

                                  $\Rightarrow 2^{9}(2^{5})$

                                 $\Rightarrow 2^{(9 + 5)}$

                                  $\Rightarrow 2^{14}$

  So ,correct answer is  $ 2^{14}$

 

edited by
Answer:

Related questions

13 votes
13 votes
2 answers
3
makhdoom ghaya asked Oct 4, 2015
1,780 views
How many integers from $1$ to $1000$ are divisible by $30$ but not by $16$?$29$$31$$32$$33$$25$