$f(x) = x^2 - 6x + 666$
$f'(x) = 2x-6$
1) Find critical points, here $3$ is critical point.
2) find sign in the intervals $(-\infty,3),(3, \infty)$
3) take any values say x=1 in $(-\infty,3)$ then $f'(x)$ is -ve
function is decreasing
4) take any values say x=4 in $(3,\infty)$ then $f'(x)$ is +ve
function is increasing.