Dark Mode

645 views

3 votes

Best answer

Let $$x = \sqrt{7 + \sqrt{7 + \sqrt{7 \ldots}}}$$

Then, we can write $x$ recursively as:

$$x = \sqrt{7+x}$$

Solving this equation, we get:

$$\begin{align}x^2 &= 7+x\\[2em]x&=\frac{-(-1)\pm\sqrt{(-1)^2-4\cdot(-7)}}{2}\\[2em]x &= \frac{1\pm\sqrt{29}}{2}\end{align}$$

**Hence, option D is the correct answer.**