search
Log In
6 votes
380 views

The equations.

  • $x_{1}+2x_{2}+3x_{3}=1$
  • $x_{1}+4x_{2}+9x_{3}=1$
  • $x_{1}+8x_{2}+27x_{3}=1$

have

  1. Only one solution
  2. Two solutions
  3. Infinitely many solutions
  4. No solutions
in Linear Algebra
edited by
380 views

1 Answer

7 votes
 
Best answer
This is non homogeneous equation ...for such type of questions we have to check following 3 cases :

1)if rank(A)<rank(A|B) then AX=B has no solution

2)if rank(A|B)=rank(A)=no of unknowns then AX=B has unique non-zero solution

3)rank(A|B)=rank(A)<no of unknowns then infinite no of solution

here I'm getting rank(A|B)=rank(A)=no of unknowns =3 so only one solution..

selected by
0
hey how are you getting rank(A|B)=rank(A)??
0
Yes and the solution is (1,0,0).

Related questions

2 votes
1 answer
1
313 views
Which of the following is true? The matrix $\begin{pmatrix} 1&0 \\ 1&2 \end{pmatrix}$ is not diagonalisable The matrix $\begin{pmatrix} 1&5 \\ 0&2 \end{pmatrix}$ is diagonalisable The matrix $\begin{pmatrix} 1&1 \\ 0&1 \end{pmatrix}$ is diagonalisable None of the above
asked Oct 14, 2015 in Linear Algebra makhdoom ghaya 313 views
3 votes
1 answer
2
462 views
Let $x$ and $y \in \mathbb{R}^{n}$ be non-zero column vectors, from the matrix $A=xy^{T}$, where $y^{T}$ is the transpose of $y$. Then the rank of $A$ is: $2$ $0$ At least $n/2$ None of the above
asked Oct 14, 2015 in Linear Algebra makhdoom ghaya 462 views
3 votes
1 answer
3
611 views
If $V$ is a vector space over the field $\mathbb{Z}/5\mathbb{Z}$ and $\dim_{Z/5\mathbb{Z}}(V)=3$ then $V$ has. 125 elements 15 elements 243 elements None of the above
asked Oct 11, 2015 in Linear Algebra makhdoom ghaya 611 views
1 vote
1 answer
4
460 views
If the system of equations $\begin{array} \\ax +y+z= 0 \\ x+by +z = 0 \\ x+y + cz = 0 \end{array}$ with $a,b,c \neq 1$ has a non trivial solutions, the value of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$ is $1$ $-1$ $3$ $-3$
asked May 7, 2019 in Linear Algebra Sayan Bose 460 views
...