edited by
1,007 views
6 votes
6 votes

The sum of the first $n$ terms of the series $1, 11, 111, 1111,\dots,$ is.

  1. $\frac{1}{81}\left ( 10^{n+1}-9n-10 \right )$
  2. $\frac{1}{81}\left ( 10^{n}-9n \right )$
  3. $\frac{1}{9}\left ( 10^{n+1}-1\right )$
  4. $\frac{1}{9}\left ( 10^{n+1}-n10^{n}\right )$
  5. None of the above
edited by

1 Answer

Best answer
13 votes
13 votes

$S = (1+11+111 + \cdots n \text{ terms})$

$=\dfrac 19 \times (9+99+999 + \cdots n \text{ terms)}$

$=\dfrac19 \Bigl ((\color{blue}{10}-\color{red}{1})+(\color{blue}{100}-\color{red}{1})+(\color{blue}{1000}-\color{red}{1}) + \cdots n \text{ terms} \Bigr )$

$= \dfrac19 \Bigl (\color{blue}{(10+100 + \cdots 10^n)} - \color{red}{(1+1+\cdots n \text{ terms)}} \Bigr )$

$=\dfrac 19 \left ( \color{blue}{\dfrac{10^{n+1} - 10}{10-1}} - \color{red}{n} \right )$

$=\dfrac 19 \left ( \dfrac{10^{n+1} - 10 - 9n}{9} \right )$

$=\dfrac{10^{n+1} - 9n - 10}{81}$

So, the correct answer is option A.

edited by
Answer:

Related questions

7 votes
7 votes
2 answers
1
makhdoom ghaya asked Oct 19, 2015
1,202 views
Let $n>1$ be an odd integer. The number of zeros at the end of the number $99^{n}+1$ is$1$$2$$3$$4$None of the above
10 votes
10 votes
1 answer
2
makhdoom ghaya asked Oct 19, 2015
1,173 views
The equation of the tangent to the unit circle at point ($\cos \alpha, \sin \alpha $) is$x\cos \alpha-y \sin\alpha=1 $$x\sin \alpha-y \cos\alpha =1$$x\cos \alpha+ y\sin\a...
12 votes
12 votes
3 answers
3
makhdoom ghaya asked Oct 19, 2015
1,526 views
The exponent of $3$ in the product $100!$ is$27$$33$$44$$48$None of the above
8 votes
8 votes
4 answers
4
makhdoom ghaya asked Oct 19, 2015
1,445 views
If $z=\dfrac{\sqrt{3}-i}{2}$ and $\large(z^{95}+ i^{67})^{97}= z^{n}$, then the smallest value of $n$ is$1$$10$$11$$12$None of the above