The characteristic equation is : | A - zI | = 0 , where I is an identity matrix of order 5. i.e. determinant of the below shown matrix to be 0. 1-z 0 0 0 1 0 1-z 1 1 0 0 1 1-z 1 0 0 1 1 1-z 0 1 0 0 0 1-z Now solve this equation to find values of z. Steps to solve : 1) Expand the matrix by 1st row. (1-z) [ ( 1-z , 1 , 1, 0 ) (1 , 1-z, 1, 0) (1, 1, 1-z, 0) (0, 0, 0, 1-z ) ] + 1. [ ( 0, 1-z, 1, 1 ) ( 0, 1, 1-z, 1) ( 0, 1, 1, 1-z )( 1, 0, 0, 0) ] Note: ( matrix is represented in brackets, row wise ) 2) Expand both of the above 4x4 matrices along the last row. (1-z)(1-z) [ (1-z, 1, 1) (1, 1-z,1) (1 , 1, 1-z ) ] + 1.(-1) [ (1-z, 1, 1) (1, 1-z,1) (1 , 1, 1-z ) ] 3) Apply row transformations to simplify above matrices ( both the matrices are same). C1 <- C1 + C2 + C3 R2 <- R2- R1 R3 <- R3 - R1 result is : (1-z)(1-z) [ ( 3-z, 1, 1) (0, -z, 0) (0, 0, -z ) ] - 1. [ ( 3-z, 1, 1) (0, -z, 0) (0, 0, -z ) ] 4) Solve the matrix by expanding 1st column. result is : (1-z)(1-z)(z)(z) - (3-z)(z)(z) = 0 solve further to get : z^3 ( 3-z ) ( z-2 ) = 0 hence z = 0 , 0 , 0 , 3 , 2 Therefore product of non zero eigenvales is 6.