The Gateway to Computer Science Excellence
First time here? Checkout the FAQ!
x
+4 votes
207 views

$$\int_{0}^{1} \ln x\, \mathrm{d}x=$$

  1. $1$
  2. $-1$
  3. $\infty $
  4. $-\infty $
  5. None of the above.
asked in Calculus by Veteran (42.4k points) | 207 views

1 Answer

+4 votes
Best answer

Use Integration by Parts

(integral)ln(x) dx

set 
  u = ln(x),    dv = dx 
then we find 
  du = (1/x) dx,    v = x

substitute

(integral) ln(x) dx = (integral) u dv

and use integration by parts

= uv - (integral) v du

substitute u=ln(x), v=x, and du=(1/x)dx

= ln(x) x - (integral) x (1/x) dx 
= ln(x) x - (integral) dx 
= ln(x) x - x + C 
= x ln(x) - x + C. 

Now Put Limits

[ln(1)-1+C]-[0-0+C]= -1

Note-Lim [xlnx] = 0.
        x->0

answered by Active (2.5k points)
selected by
ans -1  

but note 1 thing it is definite integral not contains constatnt
ln0 is -infinity then 0*-infinity =0 ??


Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true

28,947 questions
36,793 answers
91,077 comments
34,690 users