edited by
1,532 views

3 Answers

Best answer
17 votes
17 votes
Exponent of $p$ in $n!$, where $p$ is a prime number, and $n$ is an integer greater than $p$ is: $$E_p (n!) = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \cdots + \left\lfloor \frac{n}{p^S} \right\rfloor$$ where $S$ is the largest positive integer such that $p^s \leq n \leq p^{s+1}$

So, $$\begin{align} E_3(100!) &= \left\lfloor \frac{100}{3} \right\rfloor + \left\lfloor \frac{100}{3^2} \right\rfloor + \left\lfloor \frac{100}{3^3} \right\rfloor + \left\lfloor \frac{100}{3^4} \right\rfloor+ \left\lfloor \frac{100}{3^5} \right\rfloor \\[1em] &= 33+11+3+1+0\\&= 48\end{align}$$Correct Answer: $D$
edited by
0 votes
0 votes

The formula in the sonu's answer can be represented as

0 votes
0 votes

In n! , we have factors that are multiples of 3,9,27,81,243,….. If we divide them by 3(9,18,27,36,45,...)we get (3,6,9,12,15..), still multiples of 3. This means that we still have  power of 3’s that needs an even pair, so we need to divide again by 3.

Now, since we have already counted the 3’s in the first division, we need to count the second set of 3’s. Instead of dividing again by 3, we divide them by 9 and next by 27 and so on. That is the reason why we also divide n by powers of 3.

 Count of 3s in n! = floor(n/3) + floor(n/9) + floor(n/27) + floor(n/81) +….

                                       =   $\left \lfloor \frac{100}{3} \right \rfloor$ +$\left \lfloor \frac{100}{9} \right \rfloor$ + $\left \lfloor \frac{100}{27} \right \rfloor$ + $\left \lfloor \frac{100}{81} \right \rfloor$ + $\left \lfloor \frac{100}{243} \right \rfloor$ 

                                       =    33  +  11  +  3  + 1 + 0

                                       =    48

answer is option D

Answer:

Related questions

7 votes
7 votes
2 answers
2
makhdoom ghaya asked Oct 19, 2015
1,205 views
Let $n>1$ be an odd integer. The number of zeros at the end of the number $99^{n}+1$ is$1$$2$$3$$4$None of the above
10 votes
10 votes
1 answer
3
makhdoom ghaya asked Oct 19, 2015
1,178 views
The equation of the tangent to the unit circle at point ($\cos \alpha, \sin \alpha $) is$x\cos \alpha-y \sin\alpha=1 $$x\sin \alpha-y \cos\alpha =1$$x\cos \alpha+ y\sin\a...