edited by
514 views
0 votes
0 votes

Let 

$$f(x,y) =  \begin{cases}  \dfrac{x^2y}{x^4+y^2}, &  \text{      if } (x,y) \neq (0,0) \\ 0 & \text{    if } (x,y) = (0,0)\end{cases}$$

Then $\displaystyle{\lim_{(x,y)\rightarrow(0,0)}}f (x,y)$

  1. equals $0$
  2. equals $1$
  3. equals $2$
  4. does not exist
edited by

1 Answer

2 votes
2 votes

Approaching (0,0) along the line $y = mx+c$

$\Rightarrow$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4y + y^2}$

$\Rightarrow$$\lim_{(x,y)\to(0,0)} \frac{x^2.mx}{x^4.mx + m^2x^2}$

$\Rightarrow$$\lim_{(x,y)\to(0,0)} \frac{mx^3}{mx^5 + m^2x^2}$

$\Rightarrow$ $\lim_{(x,y)\to(0,0)} \frac{x}{x^2+ 1.m}$ $ = 0$

Approaching (0,0) along the parabola

$y = x^2$

$\Rightarrow$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4 + y^2}$ $ = $ $\lim_{x\to0} \frac{x^4}{x^4 + x^4}$ 

 $= $$\lim_{x\to0} \frac{x^4}{2x^4 }$

$\Rightarrow \frac{1}{2}$

THe Limit does not exist.

answer is (D)

edited by

Related questions

3 votes
3 votes
4 answers
1
jjayantamahata asked Mar 30, 2018
1,443 views
If $a,b,c$ and $d$ satisfy the equations$a+7b+3c+5d =16$$8a+4b+6c+2d = -16$$2a+6b+4c+8d = 16$$5a+3b+7c+d= -16$Then $(a+d)(b+c)$ equals$-4$$0$$16$$-16$
0 votes
0 votes
1 answer
2
15 votes
15 votes
3 answers
3
Shreya Roy asked Apr 5, 2017
2,313 views
Consider all possible trees with $n$ nodes. Let $k$ be the number of nodes with degree greater than $1$ in a given tree. What is the maximum possible value of $k$?
1 votes
1 votes
1 answer
4
ankitgupta.1729 asked Feb 21, 2019
1,265 views
Let, $a_{n} \;=\; \left ( 1-\frac{1}{\sqrt{2}} \right ) ... \left ( 1- \frac{1}{\sqrt{n+1}} \right )$ , $n \geq 1$. Then $\lim_{n\rightarrow \infty } a_{n}$(A) equals $1$...