in Quantitative Aptitude edited
3,883 views
17 votes
17 votes

If $\log (\text{P}) = (1/2)\log (\text{Q}) = (1/3)\log (\text{R})$, then which of the following options is TRUE?

  1. $\text{P}^2 = \text{Q}^3\text{R}^2$
  2. $\text{Q}^2=\text{P}\text{R}$
  3. $\text{Q}^2 = \text{R}^3\text{P}$
  4. $\text{R}=\text{P}^2\text{Q}^2$
in Quantitative Aptitude edited
3.9k views

1 comment

Put P=$2^{10}$
      Q=$2^{20}$
      R= $2^{30}$

Put in options only b) option satisfies!
0
0

Subscribe to GO Classes for GATE CSE 2022

2 Answers

27 votes
27 votes
 
Best answer
$B$. is the answer.

Following logarithm formula, we get:
$P=Q^{\frac{1}{2}}=R^{\frac{1}{3}}$
So, $Q^{2}= P^{4}= P\times P^{3}=PR.$
edited by
by

1 comment

Simplest Approach!

4
4
3 votes
3 votes

$log(P)=\frac{1}{2}log(Q)=\frac{1}{3}log(R)$

$=>P=Q^{\frac{1}{2}}=R^{\frac{1}{3}}$

Now

$Q^{2}=Q^{\frac{1}{2}}Q^{\frac{1}{2}}Q^{\frac{1}{2}}Q^{\frac{1}{2}}$

$=>Q^{2}=PR^{\frac{1}{3}}R^{\frac{1}{3}}R^{\frac{1}{3}}$

$=>Q^{2}=PR$

 

Option B

Answer:

Related questions