1,054 views

2 Answers

Best answer
2 votes
2 votes

Method 1 : 

Once you take $x$ out of both Numerator and denominator of the expression $(x+6)/(x+1)$, We find that the Given limit is in $1^{∞}$ indeterminate form. Hence, We can directly apply the following formula (Easy to prove)

$\lim_{x \rightarrow a} f^g = e^{\lim_{x \rightarrow a} (f-1)g}$  

Note that, To apply this Formula, $1/(f-1)$ must approach to $∞$ Which We have already seen Or  can see that it does (It can be implied from the fact that the Given limit is in $1^{∞}$ indeterminate form)

Hence, We have our answer by applying this formula and that will be $e^5$ (Just a matter of putting values in the formula) 

Method 2 : 

Indeterminate forms of the form $1^∞,0^0,∞^0$ can be solved by Taking Logarithm(Taking Natural log makes calculation little less) both sides of the equation. (NOTE that $∞^∞, 0^∞, 0^{- ∞}, 1/∞,0/∞,∞/0$ are not considered indeterminate forms..) 


Proof :  $\lim_{x \rightarrow a}\,\, f^g = e^{\lim_{x \rightarrow a} (f-1)g}$  

We know $\lim_{x \rightarrow a}\,\, (1+1/f)^f = e$ .....$Eq(1)$ Where $ \lim_{x \rightarrow a} \,\,f \rightarrow \,\, ∞ $ (We can prove it by taking Natural log both sides and then solve it...Try it)

Now let's get back to our equation to prove i.e. $\lim_{x \rightarrow a}\,\, f^g = e^{\lim_{x \rightarrow a} (f-1)g}$  

Where $ \lim_{x \rightarrow a} \,\,f \rightarrow \,\, 1 $ and $ \lim_{x \rightarrow a} \,\,g \rightarrow \,\, ∞  $  (Since it is $1^∞$ form)

$\lim_{x \rightarrow a}\,\, f^g$ = $\lim_{x \rightarrow a}\,\, (1+f-1)^g $

= $\lim_{x \rightarrow a}\,\, (1+ \,\,\frac{1}{(\frac{1}{f-1})})^g $

= $\lim_{x \rightarrow a}\,\, (1+ \,\,\frac{1}{(\frac{1}{f-1})})^{g\frac{f-1}{f-1}} $

=  $\lim_{x \rightarrow a}\,\, [(1+ \,\,\frac{1}{(\frac{1}{f-1})})^{1/(f-1)}]^{g(f-1)} $

=  $\lim_{x \rightarrow a}\,\, [(1+ \,\,\frac{1}{(\frac{1}{f-1})})^{1/(f-1)}]^{\lim_{x \rightarrow a} g(f-1)} $

=  $e^{\lim_{x \rightarrow a} (f-1)g}$  

//Hence Proved

Useful formula to remember for $1^∞$ form. Remembering this will suffice for ALL $1^∞$ form.

selected by

Related questions

1 votes
1 votes
1 answer
1
srestha asked May 30, 2018
718 views
Puzzle$\lim_{y\rightarrow \alpha }\left (y-\left ( y^{2}+y \right )^{\frac{1}{2}}\right )$
2 votes
2 votes
1 answer
2
Shubhanshu asked Jan 29, 2018
889 views
Find the value of Here I got till $lim_{x \rightarrow \infty} \frac{4^2 + \frac{3^x}{4^x}}{4^{-2}}$. But how to proceed further?
5 votes
5 votes
1 answer
3
saxena0612 asked Dec 31, 2017
5,885 views
Evaluate the given limit :$lim_{x\rightarrow0} \ {\Large \frac{(1+x)^{\frac{1}{x}}-e}{x}}$options :$ \\ a) \frac{e}{8} \\ b) -\frac{e}{2} \\ c)- \frac{e}{4} \\ d) 1$
3 votes
3 votes
1 answer
4
Shubhanshu asked Nov 18, 2017
1,596 views
the value of :-$\lim_{x \rightarrow 0}(\frac{1}{x^2} - \frac{1}{sin^2x})$Is_______Answer given is -1\3