758 views
0 votes
0 votes

1 Answer

Best answer
4 votes
4 votes

Ans is D

Power of 10 in an expression gives the number of zeros at the end

To get zeros at the end we should look for 10's because in any expression presence of 10 contributes to a 0. eg:-  6x5x2x3 this expression when solved will have one zero at the end because one 10 is present (5x2= 10)

Observe that looking for 10's means looking for 2's and 5's.

Now let's evaluate given expression

2! = 2x1   here we can't get 10 because there is no 5

4!= 4x3x2x1 here also we can't get 10 because there is no 5

6!= 6x5x4x3x2x1 here we have one 5 and one 2, giving us one 10.                                                                                                            Therefore $(6!)^{6!}$ gives $(10)^{6!}$  i.e. 6! zeros 

8! =8x7x6x5x4x3x2x1 also has one 5 and one 2, giving us one 10.                                                                                                    Therefore $(8!)^{8!}$ gives $(10)^{8!}$  i.e. 8! zeros 

10!=10x9x8x7x6x5x4x3x2x1 gives 2 10's (10x5x2) i.e 100 .                                                                                                                      Therefore $(10!)^{10!}$ gives $(100)^{10!}$ = $(10)^{2\times10!}$  i.e. 2 x (10)! zeros 

thus d) 6! + 8! + 2(10!) 

selected by

Related questions

3 votes
3 votes
0 answers
1
Balaji Jegan asked Jan 26, 2018
461 views
0 votes
0 votes
1 answer
2
miller asked Feb 3, 2019
459 views
Hi everyone!I've been recently asked by one of my friends to prove an equation but still, I'm confused how to get it started tho.log(n!) = Ω(nlog(n))Does anyone know ho...
0 votes
0 votes
1 answer
3
go_editor asked Sep 15, 2018
317 views
Let $n \geq 3$ be an integer. Then the statement $(n!)^{1/n} \leq \dfrac{n+1}{2}$ istrue for every $n \geq 3$true if and only if $n \geq 5$not true for $n \geq 10$true fo...